
Information Management for z/OS
World Wide Web Interface Guide
Version 7.1 SC31-8757-00

Information Management for z/OS
World Wide Web Interface Guide
Version 7.1 SC31-8757-00

Tivoli Information Management for z/OS Web Interface Guide

Copyright Notice

© Copyright IBM Corporation 1981, 2001. All rights reserved. May only be used pursuant to a Tivoli Systems
Software License Agreement, an IBM Software License Agreement, or Addendum for Tivoli Products to IBM Customer
or License Agreement. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any computer language, in any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual, or otherwise, without prior written permission of IBM Corporation. IBM Corporation grants
you limited permission to make hardcopy or other reproductions of any machine-readable documentation for your own
use, provided that each such reproduction shall carry the IBM Corporation copyright notice. No other rights under
copyright are granted without prior written permission of IBM Corporation. The document is not intended for
production and is furnished “as is” without warranty of any kind. All warranties on this document are hereby
disclaimed, including the warranties of merchantability and fitness for a particular purpose.

U.S. Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corporation.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States, other
countries, or both: IBM, the IBM logo, Tivoli, the Tivoli logo, AIX, CICS, CICS/ESA, DATABASE 2, DB2,
DFSMS/MVS, IBMLink, Language Environment, MVS, MVS/ESA, NetView, OS/2, OS/2 WARP, OS/390, RACF,
Redbooks, RMF, SAA, System/390, Tivoli Enterprise Console, TME 10, VTAM, z/OS.

Domino and Lotus are trademarks of Lotus Development Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names mentioned in this document may be trademarks or service marks of others.

Notices

References in this publication to Tivoli Systems or IBM products, programs, or services do not imply that they will be
available in all countries in which Tivoli Systems or IBM operates. Any reference to these products, programs, or
services is not intended to imply that only Tivoli Systems or IBM products, programs, or services can be used. Subject
to valid intellectual property or other legally protectable right of Tivoli Systems or IBM, any functionally equivalent
product, program, or service can be used instead of the referenced product, program, or service. The evaluation and
verification of operation in conjunction with other products, except those expressly designated by Tivoli Systems or
IBM, are the responsibility of the user. Tivoli Systems or IBM may have patents or pending patent applications
covering subject matter in this document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North Castle
Drive, Armonk, New York 10504-1785, U.S.A.

Programming Interface Information

This publication documents intended Programming Interfaces that allow the customer to write programs to obtain the
services of Tivoli Information Management for z/OS.

Contents

Preface. ix
Who Should Read This Guide . ix

Prerequisite and Related Documentation . ix

What This Guide Contains. x

Typeface Conventions . x

Contacting Customer Support . xi

Chapter 1. Tivoli Information Management for z/OS and the World Wide
Web. 1

Overview . 1

Chapter 2. REXX Web connector for MVS -- Overview . 3
Client Components . 4

MVS/ESA Overview . 5

Tivoli Information Management for z/OS Considerations . 5

The REXX Web connector for MVS Web Server . 5

The Database Gateway Application . 6

Chapter 3. REXX Web connector for MVS -- Installation and Operations 7
Prerequisites . 7

Running the REXX Web connector for MVS Server as an MVS Batch Job . 7

BLMWWEBS Parameters . 10

Loading the REXX Web connector for MVS Home Page from a Client Browser 14

Stopping the REXX Web connector for MVS . 14

Test from a Client . 15

Running the REXX Web connector for MVS as an MVS Started Task . 15

Chapter 4. REXX Web connector for MVS -- Security Considerations 17
The REXX Web connector for MVS Operating in an Intranet . 17

Security Service Routines . 17

RACF Privileges and Authorizations . 17

REXX Web connector for MVS User Authentication . 18

The REXX Web connector for MVS Operating in the Internet . 19

Securing Your Database Gateway Application (DGA). 20

The REXX Interpret Statement . 20

TSO Command Invocation . 20

Access to Data in the Tivoli Information Management for z/OS Database. 20

iiiWorld Wide Web Interface Guide

Chapter 5. REXX Web connector for MVS -- Commands. 21
BLMWWEBS Commands . 21

REXX Web connector for MVS Server Commands . 21

Chapter 6. REXX Web connector for MVS -- Logging . 23
REXX Web connector for MVS Log Codes . 23

Chapter 7. REXX Web connector for MVS––URL Considerations 29
Static URLs . 29

Dynamic URLs . 30

Static HTML. 30

Dynamic HTML . 30

Dynamic-URL Mapping to a Forms Processing Routine . 30

Static-URL to Data Set Mapping . 31

Allocation Partitioned Data Sets To Be Used with the REXX Web connector for MVS. 32

Include Directive Support . 32

InfoWeb Directive Support - Expiring a Document . 33

The Media Types Table . 33

Chapter 8. REXX Web connector for MVS and REXX Web connector
for OS/390 -- REXX Globals. 37

RGV Service Invocation . 37

Function Call Syntax . 37

Functions . 38

Using RGV Services -- an Example. 39

Chapter 9. The Database Gateway Application . 41
Overview of the Database Gateway Application . 41

DGA REXX Forms Processing Routines (FPRs) . 42

How DGA REXX Forms Processing Routines (FPRs) Are Invoked . 43

The REXX Web connector for MVS Server Service Router - BLMWSWRT 43

BLMWSWRT Operation . 44

Sample DGA REXX Forms Processing Routines . 44

DGA REXX Forms Processing Routines Interface . 45

DGA REXX Forms Processing Routines Operation . 45

Sample DGA REXX Forms Service Routines. 46

DGA REXX Forms Service Routine BLMWSFIN Interface . 46

DGA REXX Forms Service Routine BLMWSFTE Interface. 46

DGA return codes . 46

iv Version 7.1

HTML Documents. 47

Web Server Service Routines. 47

Modifying the Database Gateway Application . 47

Sample Database Gateway Application. 48

Chapter 10. Using Java and JavaScript to Validate Data Fields 53
Data Validation on the Server . 53

Data Validation on the Client Using Java Applets. 53

Overview of the Java Applets . 54

Overview of the Sample Programs. 54

Java Applet Prerequisites . 56

Installation and Configuration of the Sample Programs . 57

The Supplied Java Applets. 59

The Supplied Samples . 61

Sample #1—Data Field Validation Using Java and JavaScripts . 61

Sample #2—Data Field Validation: Dynamically Generated HTML Forms 61

Sample #3—Data Field Validation: Static HTML Forms. 62

Advanced Modification of Sample Programs . 63

Chapter 11. REXX Web connector for OS/390 -- Overview 65
Overview of the REXX Web connector for OS/390 . 65

IBM HTTP Server for OS/390. 65

Tivoli Information Management for z/OS HLAPI/REXX Interface . 65

DGA Considerations . 66

Processing a Request from a Client Browser . 66

Debugging REXX EXECs . 66

Multitasking . 66

Prerequisites . 66

Chapter 12. REXX Web connector for OS/390 -- Installation. 67
Installing the Database Gateway Application . 68

Verifying HTTP Server File Access . 69

Starting the Sample Application . 69

Migration from REXX Web connector for MVS . 70

Migration from Earlier Versions of the Web connector for OS/390 . 70

Chapter 13. REXX Web connector for OS/390 -- Security
Considerations . 71

Sample Security Configuration. 71

vWorld Wide Web Interface Guide

||

||

Migration Notes for Security . 72

Chapter 14. REXX Web connector for OS/2 -- Overview 73
Overview of the REXX Web connector for OS/2 . 73

Processing a Request from a Client Browser . 73

Prerequisites . 74

Installation . 74

Chapter 15. REXX Web connector for OS/2 -- Functional Interface 77
Initweb . 77

Callweb. 77

Endweb. 78

Callable Service Routines . 78

Chapter 16. REXX Web connector for OS/2 -- Security Considerations 79
Security Considerations . 79

Sample Security Configuration. 79

Migration Notes for Security . 80

Chapter 17. REXX Web connector for OS/2 -- Database Gateway
Application. 81

The Database Gateway Application (DGA) . 81

DGA Service Routines. 81

DGA Router - BLMWSWRT. 81

DGA Initialization — BLMWSINI . 81

DGA Termination - BLMWSTRM. 82

DGA Global Variable Pool Service - BLMWSMLT . 82

DGA Forms Processing Routines . 82

DGA Forms Service Routines . 82

DGA Forms Initialization Service - BLMWSFIN . 82

General Migration Notes for MVS Database Gateway Application to OS/2. 83

Specific Migration Notes for MVS Database Gateway Application to OS/2 83

Migrating the BLMWSFIN Routine . 84

Migrating Forms Processing Routines . 84

Communication Protocols . 84

Migration Notes for Communication Protocol . 84

Multithreaded Transactions . 85

Migration Notes for Multithreaded Transactions . 85

Chapter 18. REXX Web connector for OS/2 -- Global Variables 87

vi Version 7.1

Global Variables . 87

SysIni Usage . 87

Migration Notes for Global Variables. 88

Chapter 19. REXX Web Connector for OS/2 -- Logging 91
Migration Notes for Logging . 91

Appendix A. Relating Publications to Specific Tasks . 93
Typical Tasks . 93

Appendix B. Tivoli Information Management for z/OS Courses 97
Education Offerings. 97

United States. 97

United Kingdom . 97

Appendix C. Where to Find More Information . 99
The Tivoli Information Management for z/OS Library . 99

Index . 103

viiWorld Wide Web Interface Guide

viii Version 7.1

Preface

This guide describes how you can access Tivoli® Information Management for z/OS from
the World Wide Web. Using the World Wide Web, you can use a browser to search for
information in Tivoli Information Management for z/OS, and you can also write help desk
applications using HTML tags. You can design several views of your system to provide
unique universal resource locators to depict various aspects of your system, such as
configuration information, change information, and problem information.

There may be references in this publication to versions of Tivoli Information Management
for z/OS’s predecessor products. For example:

¶ TME 10™ Information/Management Version 1.1

¶ Information/Management Version 6.3, Version 6.2, Version 6.1

¶ Tivoli Service Desk for OS/390® Version 1.2

Who Should Read This Guide
This guide is intended for system and application programmers who will access Tivoli
Information Management for z/OS using the Web.

You must be familiar with the information in the Tivoli Information Management for z/OS
Application Program Interface Guide and the Tivoli Information Management for z/OS
Planning and Installation Guide and Reference before you use this guide.

You must also be familiar with the information in the publications for your operating system,
communication protocol, and security product.

Prerequisite and Related Documentation
The library for Tivoli Information Management for z/OS Version 7.1 consists of these
publications. For a description of each, see “The Tivoli Information Management for z/OS
Library” on page 99.

Tivoli Information Management for z/OS Application Program Interface Guide,
SC31-8737-00

Tivoli Information Management for z/OS Client Installation and User’s Guide,
SC31-8738-00

Tivoli Information Management for z/OS Data Reporting User’s Guide, SC31-8739-00

Tivoli Information Management for z/OS Desktop User’s Guide, SC31-8740-00

Tivoli Information Management for z/OS Diagnosis Guide, GC31-8741-00

Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications,
SC31-8744-00

Tivoli Information Management for z/OS Integration Facility Guide, SC31-8745-00

Tivoli Information Management for z/OS Licensed Program Specification, GC31-8746-00

Tivoli Information Management for z/OS Master Index, Glossary, and Bibliography,
SC31-8747-00

Tivoli Information Management for z/OS Messages and Codes, GC31-8748-00

ixWorld Wide Web Interface Guide

|

Tivoli Information Management for z/OS Operation and Maintenance Reference,
SC31-8749-00

Tivoli Information Management for z/OS Panel Modification Facility Guide,
SC31-8750-00

Tivoli Information Management for z/OS Planning and Installation Guide and Reference,
GC31-8751-00

Tivoli Information Management for z/OS Problem, Change, and Configuration
Management, SC31-8752-00

Tivoli Information Management for z/OS Program Administration Guide and Reference,
SC31-8753-00

Tivoli Information Management for z/OS Reference Summary, SC31-8754-00

Tivoli Information Management for z/OS Terminal Simulator Guide and Reference,
SC31-8755-00

Tivoli Information Management for z/OS User’s Guide , SC31-8756-00

Tivoli Information Management for z/OS World Wide Web Interface Guide,
SC31-8757-00

Note: Tivoli is in the process of changing product names. Products referenced in this
manual may still be available under their old names (for example, TME 10 Enterprise
Console instead of Tivoli Enterprise Console®).

What This Guide Contains
There are now three different platforms through which Tivoli Information Management for
z/OS data can be accessed via the Web. :

¶ “REXX Web connector for MVS -- Overview” on page 3 begins the section on the
REXX Web connector for MVS™. Subsequent chapters describe aspects of using the
REXX Web connector for MVS.

¶ “The Database Gateway Application” on page 41 contains information on the Database
Gateway Application, with information that is common to both the REXX Web
connector for MVS and the REXX Web connector for OS/390.

¶ “Using Java and JavaScript to Validate Data Fields” on page 53 provides information on
how you can use Java™ to validate data fields on the client.

¶ “REXX Web connector for OS/390 -- Overview” on page 65 describes the REXX Web
connector for OS/390.

¶ “REXX Web connector for OS/2 -- Overview” on page 73 begins the section on REXX
Web connector for OS/2®, and subsequent chapters describe the use of this platform.

Typeface Conventions
This guide uses several typeface conventions for special terms and actions. These
conventions have the following meaning:

Bold Entries that you must use literally, choices, or options that you select appear in bold.

Italics Variables and values that you must provide appear in italics. New terms also appear
in italics.

Prerequisite and Related Documentation

x Version 7.1

Monospace
Code examples appear in monospace font.

The panels as presented in this guide are not meant to be exact replicas of the way a panel
might appear on the screen. The information on the panels is correct, but the spacing is not
always exact.

Commands, such as END, CONTROL, RESUME, or DOWN, appear in all capital letters in
text. Although not commands, the user responses YES and NO also appear in capital letters.

Contacting Customer Support
For support inside the United States, for this or any other Tivoli product, contact Tivoli
Customer Support in one of the following ways:
¶ Send e-mail to support@tivoli.com
¶ Call 1-800-TIVOLI8
¶ Navigate our Web site at http://www.support.tivoli.com

For support outside the United States, refer to your Customer Support Handbook for phone
numbers in your country. The Customer Support Handbook is available online at
http://www.support.tivoli.com.

When you contact Tivoli Customer Support, be prepared to provide identification
information for your company so that support personnel can assist you more readily.

The latest downloads and fixes can be obtained at http://www.tivoli.com/infoman

Typeface Conventions

xiWorld Wide Web Interface Guide

|

Contacting Customer Support

xii Version 7.1

Tivoli Information Management for z/OS
and the World Wide Web

Overview
The ability to access Tivoli Information Management for z/OS data from the World Wide
Web was introduced in Version 6.2.1. The Web connector ran as a started task on an MVS
system, and allowed client Web browsers to access MVS Tivoli Information Management for
z/OS databases through the Web connector. This version is called the REXX Web connector
for MVS. Information about this means of accessing the Web begins on page 3.

In Information/Management Version 1.1, two new alternatives to the REXX Web connector
for MVS were provided:

¶ Tivoli Information Management for z/OS REXX Web connector for OS/390. Information
about this means of accessing the Web begins on page 65.

¶ Tivoli Information Management for z/OS REXX Web connector for OS/2. Information
about this means of accessing the Web begins on page 73.

Each of these provides function similar to that of the REXX Web connector for MVS. And
in addition to the functions provided by the REXX Web connector for MVS, each of these
provides the following functions:

¶ Multithreading

¶ Advanced security features

In addition to these functions, Tivoli Information Management for z/OS REXX Web
connector for OS/2 provides support for both the TCP/IP and the APPC/MVS
communication protocols.

1

1World Wide Web Interface Guide

1.
W

o
rld

W
id

e
W

eb

Overview

2 Version 7.1

REXX Web connector for MVS -- Overview

The REXX Web connector for MVS enables you to access a Tivoli Information Management
for z/OS database using a Web browser as a client.

The REXX Web connector for MVS consists of a Web server that implements the Internet
Engineering Task Force (IETF) standard protocol HTTP 1.0 and a Database Gateway
Application (DGA) that provides Tivoli Information Management for z/OS access functions.
The DGA consists of REXX programs and HTML files which are provided as templates that
should be modified to suit the requirements of your installation.

The design of the REXX Web connector for MVS assumes there are multiple client
machines communicating asynchronously with the REXX Web connector for MVS server.
The client and server machines are part of the same IP network and communicate using
TCP/IP protocol. The network could be either the Internet itself or a private network
(intranet) that has no external connections or is connected to the Internet through a firewall.

Transactions are received by TCP/IP and queued for processing by the REXX Web
connector for MVS server.

The REXX Web connector for MVS server interprets requests from client machines,
retrieves data from Tivoli Information Management for z/OS using the DGA, and returns
response data to the client machine in the form of plain text, Hypertext Markup Language
(HTML), or in certain cases, special types of response code such as image formats.

The MVS DGA template that is provided demonstrates one possible use of the REXX Web
connector for MVS. Some other possible uses are:

¶ A helpdesk application which enables users to open problem tickets and check the status
of problem tickets they created.

¶ A retrieval system which enables users to display records stored in Tivoli Information
Management for z/OS.

¶ A front-end application causing one query to be sent to multiple Tivoli Information
Management for z/OS systems and combining outputs into a single result list presented
to the client.

Access to multimedia information is achieved by retrieving MVS data sets which include
multimedia format or by including hypertext references to other servers, usually running in a
workstation environment that supports industry standard or proprietary multimedia data
formats. Figure 1 on page 4 gives an overall view of the REXX Web connector for MVS.

2

3World Wide Web Interface Guide

2.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

M
V

S
--

O
verview

Major components can be divided into Client components and MVS/ESA™ Host components
(the Tivoli Information Management for z/OS database).

Client Components
The client should be a TCP-capable computer (either a workstation or a mainframe) with
Web browser software. Most commercially available browsers which support forms
processing should work when connecting to the REXX Web connector for MVS.

BLX-SP
Information
Management
for z/OS

HLAPI/REXX

transaction 1
transaction 2
transaction 3
transaction 4

Information Management for z/OS Web connector Server

Database
Gateway

Application
(DGA)

REXX
Globals

HTTP
Requests

Sockets Interface

HP PC RS/6000

Web Browsers

AS/400

TCP/IP Subsystem

Figure 1. Overview of the REXX Web connector for MVS Components

4 Version 7.1

You need to do only a small amount of customizing in the network components of this
application. As you will see in “Loading the REXX Web connector for MVS Home Page
from a Client Browser” on page 14, an existing Web client can begin using the REXX Web
connector for MVS application simply by loading the appropriate Uniform Resource Locator
(URL).

MVS/ESA Overview
HTTP messages are forwarded into the REXX Web connector for MVS server from the
network through the MVS TCP/IP subsystem. The REXX Web connector for MVS server
parses these requests. Requests for static HTML or binary data code are served immediately
by reading the information either from the HTML data set or from an internal cache.
Requests for HTML forms are passed to the Database Gateway Application (DGA) for
processing. The Database Gateway Application utilizes High Level Application Program
Interface/REXX (HLAPI/REXX) calls to communicate with Tivoli Information Management
for z/OS. The DGA performs the required operations, formats the data received from Tivoli
Information Management for z/OS into HTML code or plain text, and passes it back to the
REXX Web connector for MVS server to be returned to the client.

The following sections discuss three MVS/ESA components:

¶ The Tivoli Information Management for z/OS program product

¶ The REXX Web connector for MVS server

¶ The Database Gateway Application

Tivoli Information Management for z/OS Considerations
From the standpoint of Tivoli Information Management for z/OS, the Database Gateway
Application is a program which uses the standard HLAPI/REXX interface to access the
Tivoli Information Management for z/OS database. Any feature or function available through
the HLAPI/REXX interface may be used in the Database Gateway Application. The
Application Program Interface Guide and Reference (SC34-4463) provides detailed
information on the HLAPI/REXX interface.

The REXX Web connector for MVS Web Server
The REXX Web connector for MVS is a specialized Web server which receives client HTTP
1.0 requests, retrieves data from Tivoli Information Management for z/OS using the
Database Gateway Application, and sends a response. The REXX Web connector for MVS
can interpret either HTML or plain text, and can retrieve static HTML files as well as
multimedia image format files on MVS.

Client Components

5World Wide Web Interface Guide

2.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

M
V

S
--

O
verview

The Database Gateway Application
The Database Gateway Application contains program logic designed for using the Tivoli
Information Management for z/OS HLAPI/REXX interface and for generating dynamic
HTML either from Tivoli Information Management for z/OS records or from search results
lists. The sample DGA provided demonstrates the basic techniques needed to communicate
with Tivoli Information Management for z/OS, and also demonstrates a way of interacting
with a Web client. The Database Gateway Application is described in greater detail in
“Modifying the Database Gateway Application” on page 47.

Figure 2. The REXX Web connector for MVS Web Server

The Database Gateway Application

6 Version 7.1

REXX Web connector for MVS --
Installation and Operations

Prerequisites
The prerequisites for running the REXX Web connector for MVS are:

¶ A Web browser

¶ IBM® Library for SAA® REXX/370 Release 3 for MVS/ESA (5695–014)

Note: You must use the IBM TCP/IP product (which is included with OS/390) because it
supports REXX Sockets. Other vendors’ TCP/IP products are only supported if they
include REXX Sockets.

Running the REXX Web connector for MVS Server as an MVS Batch
Job

The REXX Web connector for MVS server runs as a TSO command under control of the
TSO command processor program IKJEFT01. The name of this command is BLMWWEBS.
Incoming requests from client Web browsers are queued by TCP/IP and passed to
BLMWWEBS one at a time.

Sample JCL is provided in SBLMSAMP member BLMWJCL, shown in Figure 3 on page 9.
When you are testing the REXX Web connector for MVS, you should submit the REXX
Web connector for MVS as a batch job. After you have tested it, you may want to make it a
started task, described in “Running the REXX Web connector for MVS as an MVS Started
Task” on page 15. To run it as a batch job, follow these steps:

1. Allocate a partitioned data set (PDS) to hold any REXX routines you will copy, modify,
or create. The PDS that you allocate should have the same data set organization as
SBLMREXX. At a minimum, allocate the equivalent of 10 tracks on a 3390. This user
PDS should be concatenated ahead of the SBLMREXX data set pointed to by the
SYSEXEC DD statement in the sample BLMWJCL.

2. Edit the sample JCL provided in BLMWJCL. Read the comments and modify the data
set names to match your installation. Change the JOB card as needed. Ensure that the
STEPLIB concatenation contains any additional loadlibs, such as session members, that
may be necessary. Review the parameters on the BLMWWEBS commands and change
the TCPIP(), TASKID(), OWNER(), and HTML() parameters to match the values of
your installation. Because the sample application uses Tivoli-supplied PIDTs, be sure that
either your session member points to the Tivoli-supplied SBLMFMT data set or use a
DD card in the JCL (typically RFTDD) for SBLMFMT.

3

7World Wide Web Interface Guide

|

|

|
|
|

3.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

M
V

S
--

In
stallatio

n

3. Copy members BLMWSFIN and BLMWSWSE from the SBLMREXX data set to the
user PDS created in the first step of this procedure.

Note: Do not modify the sample application members in SBLMREXX. Always copy
them to your REXX PDS and make any needed changes there.

4. Edit the BLMWSFIN member in your REXX PDS and change the APPLICATION_ID,
SESSION_MEMBER, and PRIVILEGE_CLASS as needed for your test setup. The
Tivoli Information Management for z/OS Application Program Interface Guide contains
additional information about control parameter data blocks (PDBs) used by the
HLAPI/REXX interface. If you would like the Webmaster (the user specified on the
OWNER() parameter of BLMWWEBS) to be able to issue Server commands (described
in “REXX Web connector for MVS -- Commands” on page 21), then you will need to
edit the BLMWSWSE member in your REXX PDS; you will need to change RETURN
8 USERID; to RETURN 0 USERID; at the end of the BLMWSWSE member. This
change will allow all Web browsers to connect to the REXX Web connector for MVS
Server, but only the Webmaster will be able to issue commands. You should make this
change, and also specify AUTHORITY(NO) on the BLMWWEBS command while you
are becoming familiar with REXX Web connector for MVS.

Note: BLMWJCL is shipped with AUTHORITY(NO). You should carefully review
“REXX Web connector for MVS -- Security Considerations” on page 17 before
changing this parameter.

5. Ensure that TCP/IP is active

6. Ensure that the IBM Library for SAA REXX/370 is accessible. It must be in LPA,
LINKLIST, or the JCL STEPLIB.

7. Ensure that the Tivoli Information Management for z/OS BLX Service Provider
(BLX-SP) is active

8. Submit the BLMWJCL job stream to start the REXX Web connector for MVS

9. Go to “Test from a Client” on page 15

Figure 3 on page 9 shows the BLMWJCL provided in SBLMSAMP:

Running as an MVS Batch Job

8 Version 7.1

//WEBDEV JOB ' ',TIME=1440, 00010000
// REGION=8M, 00020000
// CLASS=A,MSGCLASS=a,MSGLEVEL=(1,1) 00030000
//*---* 00140000
//* INFOWEB Server JCL - 00150000
//* - 00160000
//* - 00170000
//* DDNAME Description - 00180000
//* ======== ======================================= - 00190000
//* STEPLIB BLM.SBLMMOD1 - 00200000
//* SYSEXEC Rexx procedure library - 00210000
//* - your.user.rexx (optional) - 00220000
//* - BLM.SBLMREXX - 00230000
//* RFTDD Change the following DD to point to @P1A- 00240000
//* your customized RFT if you have one @P1A- 00250000
//* Always concatenate the Tivoli supplied@P1A- 00260000
//* SBLMFMT dataset @P1A- 00270000
//* - your.api.pidts @P1A- 00280000
//* - BLM.SBLMFMT @P1A@P2C- 00290000
//* HLAPILOG (optional) For HLAPI/Rexx debugging - 00300000
//* APIPRT (optional) For HLAPI/Rexx debugging - 00310000
//* SYSTSPRT For TSO terminal monitor program - 00320000
//* SYSOUT For TSO terminal monitor program - 00330000
//* SYSPRINT For TSO terminal monitor program - 00340000
//* - 00350000
//* SYSTSIN TSO terminal monitor program input - 00360000
//* - 00370000
//* Comments: - 00380000
//* Update the jobcard and data set names - 00390000
//* where appropriate. - 00400000
//* Update the BLM.SBLMxxxx data set names - 00410000
//* to the names used at your installation. - 00420000
//* BLMWWEBS lower case parameters should - 00430000
//* be substituted with your values. - 00440000
//* - 00450000
//* CHANGE ACTIVITY - 00460000
//* $L0= P4046 JOY6212 960215 DMGPGTR: INFO/MGMT 6.2.1- 00470000
//* Web connector - 00480000
//* $P1= P4226 JOY6301 960805 DMGPGTR: Added RFTDD - 00490000
//* statement - 00500000
//* $P2= P4241 JOY6301 960815 DMGPPJL: fix typo - 00510000
//* $01= OW24937 JOY6301 970731 DMGPLDM: Fix for Huge - 00520000
//* sends - 00530000
//* $02= OW26576 JOY6301 970731 DMGPLDM: Stop reposting - 00540000
//* Netscape forms - 00550000
//* $L1= DCR521 HOYT100 970721 DMGPGTR: OS/390 web - 00560000
//* connector - 00570000
//*-- 00580000

Figure 3. Sample JCL provided in BLMWJCL, a member of SBLMSAMP. Part 1 of 2

Running as an MVS Batch Job

9World Wide Web Interface Guide

3.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

M
V

S
--

In
stallatio

n

BLMWWEBS Parameters
These are the parameters that you can specify in the invocation of BLMWWEBS. Operands
separated by an OR symbol (|) mean you choose one of them. If you omit a parameter or
specify it as a blank, the default value is invoked.

TCPIP(name)
The name of the TCP/IP started task in use at the system where the REXX Web
connector for MVS is running. The default value is TCPIP.

PORT(number)
The port number to be used by the REXX Web connector for MVS. If another Web
server is running in the same MVS system, the port number must be changed to
avoid conflict. You should check the port number with your TCP/IP coordinator to
ensure that it does not conflict with registered port numbers or port numbers already
in use in your system. Valid port numbers are in the range 1-65534. If you specify a
value outside of the 1-65534 range, then a port number of 80 is assigned. The
default value is 80.

If you would like to reserve a port number for use by the REXX Web connector for
MVS, have your TCP/IP coordinator define a PORT statement in the TCP/IP
configuration file.

//STEP0100 EXEC PGM=IKJEFT01,PARM='PROFILE NOPREFIX NOWTPMSG' 00590000
//STEPLIB DD DISP=SHR,DSN=BLM.SBLMMOD1 00600000
//SYSEXEC DD DISP=SHR,DSN=your.user.rexx 00610000
// DD DISP=SHR,DSN=BLM.SBLMREXX 00620000
//RFTDD DD DISP=SHR,DSN=your.api.pidts 00630000
// DD DISP=SHR,DSN=BLM.SBLMFMT 00640000
//HLAPILOG DD SYSOUT=*,OUTLIM=20000 00650000
//APIPRINT DD SYSOUT=*,OUTLIM=20000 00660000
//SYSTSPRT DD SYSOUT=*,OUTLIM=20000 00670000
//SYSPRINT DD SYSOUT=*,OUTLIM=20000 00680000
//SYSOUT DD SYSOUT=*,OUTLIM=20000 00690000
//SYSTSIN DD * 00700000
%BLMWWEBS + 00710000

TCPIP(TCPIP) + 00720000
PORT(8000) + 00730000
BACKLOG(256) + 00740000
TASKID(ibmuser) + 00750000
OWNER(ibmuser) + 00760000
HTML('BLM.VxRxMx.SBLMHTMV') + 00770000
TRACE(YES) + 00780000
EXECFLOW(YES) + 00790000
CMDPREFIX('!') + 00800000
RECVTIMEOUT(30) + 00810000
TIMEZONE(EST) + 00820000
CACHESIZE(10) + 00830000
AUTHORITY(NO) + 00840000
DEBUG(NO) + 00850000
SEGMENTSIZE(16384)+ 00860000
SENDTIMEOUT(120)+ 00870000
PRAGMA(CACHE) + 00880000
LIFESPAN(30) + 00890000
REALM('INFOWCF') + 00900000
MEDIATYPETABLE('BLM.V1R2M0.SBLMSAMP(BLMWMIME)') + 00910000
DOCUMENTROOT('ibmuser') 00920000

/* 00930000

Figure 4. Sample JCL provided in BLMWJCL, a member of SBLMSAMP. Part 2 of 2

BLMWWEBS Parameters

10 Version 7.1

|

Note: If you choose to reserve a port number for the REXX Web connector for
MVS (running in batch or as a started task), be sure that the port number in
the TCP/IP configuration file matches the PORT() parameter used by the
REXX Web connector for MVS. See TCP/IP for MVS V3R1 Customization
and Administration Guide for more information.

BACKLOG(number)
The backlog queue value used by the TCP/IP address space when a connect request
arrives to the REXX Web connector for MVS server and the server is already
connected to another client and is busy serving that client’s request. TCP/IP will use
this value as the maximum number of connection requests that can be queued. If
further connection requests arrive, they will be rejected by TCP/IP. The client Web
browser will indicate this with a connection refused message. The maximum value
for this parameter is 1024. The default value for this parameter is 256.

TASKID(name)
This should be 1 to 8 characters used as a unique name for this server as its task
identification to the TCP/IP system. The default is the TSO userid assigned to the
REXX Web connector for MVS.

OWNER(name)
The Webmaster for this server. This user will be able to issue commands to the
REXX Web connector for MVS server. BLMWWEBS compares the value specified
in the OWNER() parameter to the value entered by the users at their browsers when
they are prompted for authorization. If there is a match, commands will be accepted.
The default value for this parameter is WEBMASTER.

HTML(pds-name)
The name of the partitioned data set (PDS) that contains HTML files to be used by
REXX Web connector for MVS. It defaults to <userid>.HTML, where <userid> is
the TSO userid assigned to the REXX Web connector for MVS.

TRACE(YES|NO)
This flag indicates to the server whether to issue detail messages related to activity
the server is performing. This flag can also be changed by REXX Web connector for
MVS commands (see “REXX Web connector for MVS Server Commands” on
page 21). The default is NO.

EXECFLOW(YES|NO)
This flag indicates to the server whether to issue message number 024 indicating the
server routine name and the parameters used by the routine. This flag can also be
changed by REXX Web connector for MVS commands (see “REXX Web connector
for MVS Server Commands” on page 21). The default is NO.

CMDPREFIX(string)
This character string indicates to the server whether to treat the message as a
command. Quotes or apostrophes cannot be part of this string because they are used
as delimiters. The default is the exclamation mark !.

RECVTIMEOUT(number)
The duration in seconds to wait for data available at the TCP/IP socket coming from
a client. This wait time applies when a connection has already been established and
some data has been received from the client, but it is not yet a complete HTTP
request. The maximum value for this parameter is 300. The default value for this
parameter is 15.

BLMWWEBS Parameters

11World Wide Web Interface Guide

3.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

M
V

S
--

In
stallatio

n

TIMEZONE(hh:mm |EST|CST|MST|PST|ALA|HAW)
The number of hours and minutes of displacement from the GMT (Greenwich Mean
Time) zone. This value is used to calculate the date and time values sent back to the
client as part of the HTTP response. For example, −5:00 or −5 is the US EST time
zone, which is GMT minus 5 hours. Displacement values for hours and minutes
must be in the HH:MM format. Hours alone are accepted, as are the values of
standard US time zones. If this value is omitted or invalid, the default is 00:00.
Remember to adjust these values for daylight savings time.

CACHESIZE(number)
The size in megabytes of the REXX Web connector for MVS server static cache,
which is usually for media data of type HTML, HTM, and TXT. Refer to “The
Media Types Table” on page 33 for more information on caching. Dynamic data is
never cached by the REXX Web connector for MVS server, and contains HTTP
headers that prevent proxy servers and Web browsers from caching it. The maximum
value for this parameter is 50. The default value for this parameter is 8. Specifying
CACHESIZE(0) will stop the caching feature. This may be useful when developing
HTML pages to prevent an out-of-date version of the page from being shown.

AUTHORITY(YES|NO)
Specifies whether you want Tivoli Information Management for z/OS REXX Web
connector for MVS security routines enabled to activate the use of the HTTP Basic
authentication scheme. More information on the authentication can be found in
“REXX Web connector for MVS User Authentication” on page 18. The initial setting
of this field as shipped in the BLMWJCL is NO. A setting of AUTHORITY(YES)
will cause your browser to display an authority window on which the user must
enter an Authentication string the first time the REXX Web connector for MVS is
accessed. The Authentication string is verified by the security exit BLMWSWSE. If
the string is verified as correct, then the current and subsequent browser transactions
are processed. The default value for this parameter is YES.

DEBUG(YES|NO)
This flag indicates to the server that additional output useful for debugging problems
in BLMWWEBS should be created. This additional output is useful when working
with the Tivoli Services group. The DEBUG command can also be used to turn the
DEBUG option on and off. The default value for this parameter is NO.

SEGMENTSIZE(number)
The size in bytes of each segment sent by the server on each socket send. Valid
specifications for this parameter are in the range 2048–64536. It is recommended
that SEGMENTSIZE be equal to one-half or less than the value used by the TCP/IP
parameter DATABUFFERPOOLSIZE. SEGMENTSIZE must not exceed
DATABUFFERPOOLSIZE or the sends will fail during times of high TCP/IP traffic
or data transfers. The default value for this parameter is 4096.

SENDTIMEOUT(number)
The number of seconds the server will wait for a send buffer to become available.
Valid values for this parameter are in the range 30–64536. The default value for this
parameter is 120 seconds.

LIFESPAN(nnnn|FOREVER)
The number of minutes that a dynamically created form will be considered valid or
not expired. Valid values are 0 to 1440 or the word FOREVER. If 0 is specified,
then all forms will be sent expired. If FOREVER is specified, then all forms sent
will not expire. If a number in the range of 1–1440 is used, all forms sent will

BLMWWEBS Parameters

12 Version 7.1

expire after that number of minutes has passed. See “InfoWeb Directive Support -
Expiring a Document” on page 33 for a method to expire individual forms. The
default value for this parameter is 30 minutes if LIFESPAN is omitted or an invalid
value is specified.

PRAGMA(CACHE|NOCACHE)
This parameter controls the ability of a proxy server or gateway to cache dynamic
HTML that is sent to the client browser by the Web connector feature server.
Specifying PRAGMA(CACHE) allows the proxy server or gateway to cache
dynamic HTML, and is the default if PRAGMA is omitted or an invalid value is
specified. Specifying PRAGMA(NOCACHE) causes the Web connector server to
add PRAGMA(NOCACHE) to the HTTP header, which prevents a proxy server or
gateway from caching dynamic HTML. Specifying PRAGMA(CACHE) is
recommended.

DOCUMENTROOT(prefixvalue)
This parameter specifies a prefix to be added when algorithmic mapping of a URL
to a data set is used. This provides an additional level of security by restricting the
data set names that can be referenced by the REXX Web connector for MVS. For
example, if the document root is INFOMAN.WEB, then any data set generated by
the algorithm will start with the qualifier INFOMAN.WEB. A URL such as
http://mvs20:8000/main.html will reference INFOMAN.WEB.HTML(MAIN) (see
“Static-URL to Data Set Mapping” on page 31 for details about algorithmic mapping
of a URL to a data set. If this value is omitted, the current userid is used. A value
specified for DOCUMENTROOT neither overrides nor depends on the coding of the
HTML() parameter.

REALM(name)
This parameter provides a means to customize the signon prompt used by the Web
browser when AUTHORITY is set to YES (see the description of the AUTHORITY
parameter of the BLMWWEBS command). The string specified as REALM will be
inserted in the signon prompt. Different Web browsers use different formats for this
signon prompt, so you should verify that the signon prompt issues a meaningful
message by performing some testing in your operating environment. The value of
the REALM parameter can be temporarily overridden by the security verification
routine, BLMWSWSE. If the format of the string returned by BLMWSWSE is a
return code 1 followed by an informational message, the message will substitute the
REALM for the transaction in process. This allows for better communication from
the security verification routine; for example, if the error message indicates that the
password entered has expired and a new password should be entered, this detail can
be clearly indicated by using this message. If this parameter is omitted, the value
INFOWCF is used for the REALM name.

MEDIATYPETABLE(data set)
This parameter is the data set name of the file that contains the mime types table.
Please refer to “The Media Types Table” on page 33 for a description of this table.
The initial setting of this parameter is BLM.VxRxMx.SBLMSAMP(BLMWMIME).
If the parameter is missing, the default is <userid>.media.

BLMWWEBS Parameters

13World Wide Web Interface Guide

3.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

M
V

S
--

In
stallatio

n

Loading the REXX Web connector for MVS Home Page from a Client
Browser

To load the sample REXX Web connector for MVS home page in your Web browser, you
must know the IP host name for the MVS host and the TCP/IP port number. (The TCP/IP
port number was coded in the PORT() parameter described in “BLMWWEBS Parameters”
on page 10). The REXX Web connector for MVS server log will show you the IP address

and host name for your MVS/ESA system and the TCP/IP port number; see “REXX Web
connector for MVS -- Logging” on page 23 for an example of the REXX Web connector for
MVS server log.

“Dynamic-URL Mapping to a Forms Processing Routine” on page 30 shows a sample URL
structure. An example of the URL to load the REXX Web connector for MVS home page
might be:
http://9.152.64.23:8000/infoweb/blmwhdbm.html

where

¶ http:// is the header required by protocol

¶ 9.152.64.23 is an example IP address. Replace this with the IP address for your MVS
host (if a hostname for the IP address is defined in the network, it can be used instead;
for example, MVS01 might then be substituted for 9.152.64.23).

¶ :8000 is the port address. Use the value from the PORT() parameter of the
BLMWWEBS command.

¶ /infoweb/ is a marker used to simplify URL parsing on the REXX Web connector for
MVS

¶ blmwhdbm.html is the home page name for the sample application.

Once you develop applications for the REXX Web connector for MVS, you may want to use
a different home page. The IP and port will not change unless you start another Web
connector or change the host IP address.

Stopping the REXX Web connector for MVS
To stop the REXX Web connector for MVS, on the Web browser enter the !CLOSE
command (our examples use the default character ! as the command prefix; you may choose
to specify a CMDPREFIX() with a different character).
http://9.67.51.12:8000/!close

To enter the !CLOSE command, or any other command, you must be an authenticated user
equal to that of the OWNER() parameter in the JCL parameters.

Note: Once you have closed the REXX Web connector for MVS, you may need to wait
several minutes before you restart it in order to give TCP/IP time to clear its socket
connections.

Using the !CLOSE command from a browser is the preferred method of stopping the REXX
Web connector for MVS, whether running in batch or as a started task. The MVS CANCEL
command can be used, but depending on the status of the REXX Web connector for MVS at
the time the CANCEL is issued, you may receive a system abend of 13E, 222, A03, or D23.

Loading from a Client Browser

14 Version 7.1

Test from a Client
In order to test the REXX Web connector for MVS, do the following:

1. Ensure that your client machine is connected to the MVS host via an IP network.

2. Ensure that the REXX Web connector for MVS is active on MVS.

3. Start a Web browser on your client machine.

4. Connect to the REXX Web connector for MVS Home Page as described in “Loading the
REXX Web connector for MVS Home Page from a Client Browser” on page 14. Once
you have loaded the home page, you can navigate through the REXX Web connector for
MVS application using hyperlinks.

Note: An error screen may appear that looks like

Sorry ...
The request from your web client
GET URI: infoweb/blmwhdbm
has failed, reason was : File name not found
HTTP response code: 404 (Not Found)
From server at
Running: InfoWCF/1.0

If this occurs, look closely at the GET URI line. It should always say GET URI:
INFOWEB/nnnnnn (if you are not using the DOCUMENTROOT parameter), where
NNNNNN should be BLMWHDBM if you are using the supplied sample application. If
INFOWEB is missing, add INFOWEB/ to the URL and try again. If INFOWEB/ is
already present, then ensure that the data set pointed to by the HTML() parameter in the
BLMWWEBS command contains BLMWHDBM.

Running the REXX Web connector for MVS as an MVS Started Task
After you have tested the REXX Web connector for MVS as a batch job, you may want to
run it as an MVS started task.

To run the Web connector feature as a started task, you must define a procedure for it in
SYS1.PROCLIB or the procedure library in the JES proclib concatenation. These are the
steps:

1. Create a member in the procedure library (proclib).

2. Copy the BLMWJCL job stream into the member you created in the proclib and make
the following changes to the JCL:

¶ Remove the Job card.

¶ Remove the /* from the end of the BLMWJCL.

¶ Remove the in-stream DD data used for //SYSTSIN. An in-stream data set cannot be
used in a proc. Therefore, place the in-stream DD data into a data set. The in-stream
data is the BLMWWEBS command and its parameters. The new data set should
have LRECL=80 RECFM=FB, and it can be a member of a partitioned data set
(PDS). Do not use a data set in the //SYSEXEC concatenation.

¶ Change the //SYSTSIN DD to use the DSN= for the data set you created that now
contains the BLMWWEBS command and its parameters. Add DISP=SHR. For
example,
//SYSTSIN DD DSN=webcon.parms,DISP=SHR

Test from a Client

15World Wide Web Interface Guide

3.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

M
V

S
--

In
stallatio

n

3. Ensure that TCP/IP is active.

4. Ensure that the Tivoli Information Management for z/OS BLX Service Provider
(BLX-SP) is active.

5. Have the MVS system operator issue the MVS start command:
S procname

where PROCNAME is the name of the member you created in the proclib that contains the
procedure to run the REXX Web connector for MVS.

Running as an MVS Started Task

16 Version 7.1

REXX Web connector for MVS -- Security
Considerations

Two different environments must be considered when discussing security issues:

¶ The REXX Web connector for MVS operating in an intranet environment only

¶ The REXX Web connector for MVS operating in the Internet (and possibly in an
intranet at the same time)

A “firewall” completely blocking access to the REXX Web connector for MVS is equivalent
to operating in an intranet, if the firewall completely shields the REXX Web connector for
MVS from the Internet. For the purpose of this discussion, we will stipulate that an intranet
is a secure environment, with no access to the external Internet.

The REXX Web connector for MVS Operating in an Intranet
Because the Resource Access Control Facility (RACF®) authority assigned to the REXX
Web connector for MVS provides another layer of security, careful consideration should be
given to the access authority provided. The REXX Web connector for MVS should be
assigned RACF access authority sufficient only to perform the transactions defined in the
Database Gateway Application (DGA).

Security Service Routines
All transactions performed by the REXX Web connector for MVS are defined by the DGA.
As with any other database application, making the DGA transactions secure is fundamental
to the overall security of your installation. The REXX Web connector for MVS user access
is controlled by the Security Service Routines:

BLMWSWSE Web Service Security Exit

BLMWSW64 Web connector Decode String Routine

RACF Privileges and Authorizations
RACF authorization is performed at the time the IKJEFT01 session is started, either as a
batch job, as a started task, or as an interactive user.

All transactions run by the DGA share the attributes of the RACF userid that was either
specified or assigned by the OS/390 system to the REXX Web connector for MVS server.

This justifies using a very conservative RACF profile for the REXX Web connector for
MVS user ID. In the unlikely event that all other barriers have been passed, RACF will
restrict any further access within your OS/390 system to a very limited area.

4

17World Wide Web Interface Guide

4.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

M
V

S
--

S
ecu

rity

Note: Remember that the DGA does not give full access nor is it a command shell by itself.
It only runs transactions defined by the Forms Processing Routines.

RACF privileges or access to data sets, other than the ones allocated by the REXX Web
connector for MVS procedure or JCL, are not required.

If you utilize a user ID with special authority for started tasks in your MVS/ESA
environment, and you plan to make the REXX Web connector for MVS a started task, you
should consider providing it with a different RACF userid, with access authorities and
privileges that are the minimum required to permit its operation.

REXX Web connector for MVS User Authentication
“BLMWWEBS Parameters” on page 10 describes the BLMWWEBS parameters that you
will modify to control some of the functions of the REXX Web connector for MVS. One of
the parameters in BLMWWEBS is AUTHORITY(<YES/NO>). If AUTHORITY(YES) is
specified in the invocation of BLMWWEBS, the REXX Web connector for MVS
implements what is defined in HTTP protocol as the Basic authentication scheme. No other
security protocols are available directly from the REXX Web connector for MVS, although it
could be combined with a proxy server that provides additional security protocols, or by
other combinations of software and hardware that provide added security.

The Basic authentication scheme enables an encoded userid/password pair to be passed to
the REXX Web connector for MVS at the time an HTTP transaction is initiated. The server,
BLMWWEBS, calls the security routine BLMWSWSE. BLMWSWSE calls BLMWSW64,
which uses an algorithm called Base 64 decoding to decode the information and return it to
the server.

Note: The Base 64 algorithm is an Internet standard defined by the IETF Request For
Comments (RFC) number 1421.

BLMWSWSE allows or denies access to a client user by returning specific codes and
information to the REXX Web connector for MVS server:

¶ To allow a user to have access, BLMWSWSE should return RC=0, along with a userid
that will be passed as a parameter to BLMWSWRT.

¶ To deny access to a user and return the REALM() value, BLMWSWSE should return
RC=8. See the explanation for the REALM parameter in “BLMWWEBS Parameters” on
page 10.

¶ To deny access and return a replacement string to use as the REALM value,
BLMWSWSE should return RC=1 along with the string used to replace the REALM()
value.

¶ To allow BLMWSWSE to have BLMWSWRT called, BLMWSWSE should return
RC=4 followed by a user id, if desired, and a member name to be used by
BLMWSWRT. A comma must be returned to separate the userid and the member name.
The member name is required, and if this is omitted or the return data does not contain
the comma, then the server will treat this as RC=8 and return the REALM() value to the
client. If the returned data is correct, then the server will discard any data received from
the client and call BLMWSWRT using the member name as the URI. The user can add
additional REXX code to BLMWSWRT to determine what information the client will
receive.

In the following examples of return statements, assume that userid is a variable:

Operating in an Intranet

18 Version 7.1

¶ Allow access for userid:
return 0 userid;

¶ Deny access and use REALM():
return 8;

¶ Deny access and use REALM(); userid is ignored:
return 8 userid;

¶ Deny access, use ABC HelpDesk to replace the REALM() value:
return 1 'ABC HelpDesk;

¶ BLMWSWRT will be called and to it will be passed userid and the member name
EXPIRED:
return 4 userid ',EXPIRED';

¶ BLMWSWRT will be called. A null string will be passed as the userid parameter to
BLMWSWRT. Member name REVOKED will be used.
member='REVOKED'
return 4 ','member;

The model BLMWSWSE routine should be customized to implement the security standards
of your installation. You should carefully review the different authentication schemes and
their advantages and disadvantages; once a scheme is chosen, you can modify BLMWSWSE
to implement it.

The REXX Web connector for MVS Operating in the Internet
Internet security is an important issue that must be given significant consideration. Any
security scheme that you consider should be carefully reviewed by your installation security
staff and perhaps even validated by external consultants.

Most MVS/ESA systems do not connect directly to the Internet, but are protected by
firewalls and other security mechanisms.

In general, you should not connect the REXX Web connector for MVS to the Internet
without using an intermediate security layer. This security layer should provide another level
of userid/password protection, and possibly a data encryption mechanism.

The objective of this security layer is to ensure that:

¶ Data transmission on the Internet is secure, that is, packet data is protected while it
travels the public network.

¶ The user of the REXX Web connector for MVS is an authorized user of the server, and
the access codes provide verification of identity.

Once those two conditions are met, the Internet user should be treated in the same way as an
intranet user.

Operating in an Intranet

19World Wide Web Interface Guide

4.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

M
V

S
--

S
ecu

rity

Securing Your Database Gateway Application (DGA)
The DGA can provide an additional layer of security. In order to create a secure DGA, you
should follow some rules to prevent unauthorized access to your code.

¶ Avoid the use of the REXX Interpret statement

¶ Do not provide the capability of invoking TSO commands

¶ Use a privilege class for the REXX Web connector for MVS that provides minimum
access to Tivoli Information Management for z/OS data.

The REXX Interpret Statement
You should not use the Interpret statement when coding your DGA router or your Forms
Processing Routines (FPRs). If you use the Interpret statement, it could make your DGA
vulnerable to a Trojan Horse embedded in an HTTP request that could use a REXX
statement to overwrite, delete, or access data.

If you do use the Interpret statement in your Database Gateway Application code, you
should ensure that any string you are going to interpret does not contain REXX statement
separator characters; allowing REXX statement separator characters is a security exposure.

Note: CGI scripts written in Perl or other interpreted languages are subject to the same
security exposure. Such an exposure is not unique to REXX Web connector for MVS,
but is a consideration for most available Web servers.

TSO Command Invocation
If you permit TSO commands to be run from your Database Gateway Application FPRs, you
may provide an opening for a Trojan Horse attack, as variable data entered from a form field
may include TSO command delimiters and be used to change the intended FPR function.
This security exposure is similar to that described for the Interpret statement.

Access to Data in the Tivoli Information Management for z/OS
Database

The Tivoli Information Management for z/OS Application Programming Interface is entirely
under the control of its privilege class. The privilege class is controlled by the application_id
and privilege_class values coded in BLMWSFIN, described in “DGA REXX Forms Service
Routine BLMWSFIN Interface” on page 46 and in the individual forms processing routines
beginning with “DGA REXX Forms Processing Routines (FPRs)” on page 42. Specifying
appropriate values here will enable you to restrict access of the Web browser to data in the
Tivoli Information Management for z/OS database. Using a privilege class with an authority
of master is not recommended. Additional information about the privilege class concept can
be found in Tivoli Information Management for z/OS Application Program Interface Guide
and Tivoli Information Management for z/OS Program Administration Guide and Reference.

Securing Your DGA

20 Version 7.1

REXX Web connector for MVS --
Commands

Commands are only accepted from Web browsers when the User name entered from a
security authority signon window (as in the example in Figure 6 on page 49) matches the
value specified in the OWNER parameter specified in the BLMWWEBS command.

Two scenarios exist where security authority signon windows are presented:

¶ If AUTHORITY(YES) is specified, when each browser first accesses the REXX Web
connector for MVS through a URL.

¶ If AUTHORITY(NO) is specified, the first time a command is sent to the REXX Web
connector for MVS.

BLMWWEBS Commands
BLMWWEBS commands use the following syntax:
http://<hostname>:<port>/<cmdprefix string><command>

For example
http://MVS20:8000/!CLOSE

indicates that the host name is MVS20, the Web server is using port number 8000, and ! is
the specified command prefix string.

REXX Web connector for MVS Server Commands
These are the commands that can be used with the REXX Web connector for MVS:

CLOSE Terminate Web server processing.

TRACE Activate trace. This command has the same effect as
specifying TRACE(YES) in the BLMWWEBS command
invocation.

NOTRACE Stop trace. This command has the same effect as specifying
TRACE(NO) in the BLMWWEBS command invocation.

EXECFLOW Start flow trace. This command has the same effect as
specifying EXECFLOW(YES) in the BLMWWEBS
command invocation.

NOEXECFLOW Stop flow trace. This command has the same effect as
specifying EXECFLOW(NO) in the BLMWWEBS command
invocation.

5

21World Wide Web Interface Guide

5.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

M
V

S
--

C
o

m
m

an
d

s

DROP_CACHE Flush URL cache storage. All static HTML documents
present in cache storage are released, counters are reset to
zero, and all cache memory in use is freed.

QUERY_CACHE List all URLs currently in storage as hypertext links.

ECHO Send the HTTP request just received back to the Web
browser. This command is useful when the user wants to
check that data is being properly received at the server end,
and the server can respond to a trivial request.

DEBUG Toggles debugging output on and off.

Server Commands

22 Version 7.1

REXX Web connector for MVS -- Logging

A log is produced with informational, error, and diagnostic codes. Log output is usually
found in the job output data set or SYSOUT.

The following log shows a REXX Web connector for MVS server initially started waiting
for the first client browser connection (transaction).
97/08/28 10:50:54 050 Process parameter in effect: TCPIP(TCPIP)
97/08/28 10:50:54 050 Process parameter in effect: PORT(65534)
97/08/28 10:50:54 050 Process parameter in effect: BACKLOG(256)
97/08/28 10:50:54 050 Process parameter in effect: TASKID(IBMUSER)
97/08/28 10:50:54 050 Process parameter in effect: OWNER(IBMUSER)
97/08/28 10:50:54 050 Process parameter in effect: HTML(IBMUSER.INFOWEB.HTML)
97/08/28 10:50:54 050 Process parameter in effect: REALM(INFOWCF)
97/08/28 10:50:54 050 Process parameter in effect: TRACE(NO)
97/08/28 10:50:54 050 Process parameter in effect: EXECFLOW(YES)
97/08/28 10:50:54 050 Process parameter in effect: CMDPREFIX(!)
97/08/28 10:50:54 050 Process parameter in effect: RECVTIMEOUT(30)
97/08/28 10:50:54 050 Process parameter in effect: DOCUMENTROOT(IBMUSER)
97/08/28 10:50:54 050 Process parameter in effect: TIMEZONE(-05:00)
97/08/28 10:50:54 050 Process parameter in effect: CACHESIZE(10)
97/08/28 10:50:54 050 Process parameter in effect: AUTHORITY(NO)
97/08/28 10:50:54 050 Process parameter in effect: LIFESPAN(30)
97/08/28 10:50:54 050 Process parameter in effect: PRAGMA(CACHE)
97/08/28 10:50:54 050 Process parameter in effect: DEBUG(NO)
97/08/28 10:50:54 050 Process parameter in effect: SEGMENTSIZE(16384)
97/08/28 10:50:54 050 Process parameter in effect: SENDTIMEOUT(120)
97/08/28 10:50:54 050 Process parameter in effect: MEDIATYPETABLE(BLM.V1R2M0.SBLMSAMP(BLMWMIME))
97/08/28 10:50:54 050 Process parameter in effect: FIXLEVEL(HOYxxxx)
97/08/28 10:50:54 005 Cache maximum size is 10 megabytes.
97/08/28 10:50:54 024 Routine LOAD_MIME entered, arguments:
97/08/28 10:50:55 024 Routine ZERO_STATS entered, arguments:
97/08/28 10:50:55 024 Routine ZERO_CACHE entered, arguments:
97/08/28 10:50:55 024 Routine LOOP_SOCKET entered, arguments:
97/08/28 10:50:55 024 Routine INIT_SOCKET entered, arguments:
97/08/28 10:50:57 034 Server running InfoWCF/2.0 started
97/08/28 10:50:57 035 Host name is MVSSYS01
97/08/28 10:50:57 036 Host IP address is 9.67.51.15
97/08/28 10:50:57 037 Listening to port 65534
97/08/28 10:50:57 038 Socket number in use is 1
97/08/28 10:50:58 024 Routine WAIT_REQUEST entered, arguments:

REXX Web connector for MVS Log Codes
The following is an explanation of the codes which may appear in the REXX Web connector
for MVS log.

6

23World Wide Web Interface Guide

6.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

M
V

S
--

L
o

g
g

in
g

001 Cache reset. nnn bytes released.

Explanation: The remote client browser successfully issued the !DROP_CACHE command. nnn represents the
number of bytes that the server has cached and released. This message is displayed only when TRACE(YES) was
specified.

Note: In this example, the ! is the command prefix CMDPREFIX(!); you may have a different character for the
command prefix.

002 Socket call nnnnnnnn produced msg: rc

Explanation: A TCP/IP Socket call nnnnnnnn was issued by the server and its return code is displayed. This
message is displayed only when TRACE(YES). The return code value can be found in TCP/IP V3R1 for MVS:
Application Programming Interface Reference

003 No socket cleanup needed

Explanation: Informational code to say a socket close is not needed. This message is displayed only when
TRACE(YES).

004 Socket call nnnnnnnn error msg: rc msg

Explanation: A TCP/IP Socket call was issued by the server and failed. Its return code and any additional
information is displayed. The return code value can be found in TCP/IP V3R1 for MVS: Application
Programming Interface Reference.

005 Cache maximum size is nnnnnnnn megabytes

Explanation: A display of the value for CACHESIZE in effect.

006 Socket loop

Explanation: The REXX Web connector for MVS server is waiting for a connection from a client. This
information code will periodically be displayed. This message is displayed only when TRACE(YES).

007 Client at mmmmmmmm connected using port nnnnnnnn

Explanation: The IP address and port of the current connected client browser are displayed. This message is
displayed when TRACE(YES).

008 New socket number assigned: nnnnnnnn

Explanation: The REXX Web connector for MVS server socket number which has accepted the browser
connection is displayed. This message is displayed only when TRACE(YES).

009 Waiting for more data from nnnnnnnn port

Explanation: The REXX Web connector for MVS server socket is waiting for more data from the client
browser.

Log Codes

24 Version 7.1

010 Data read from cache = nnnnnnnn bytes

Explanation: If data was cached from a previous transaction such as an HTML, it is sent back directly to the
client browser without performing an I/O function. The data length of the item cached is displayed. This message
is displayed only when TRACE(YES).

011 Cache hit ratio is hit_ratio mmmm/nnnn where mmmm is the number of cache bytes and where nnnn is the
total number of bytes

Explanation: The ratio of cache bytes to total bytes is displayed. This message is displayed only when
TRACE(YES) was specified

012 Response sent to client at nnnnnnn where nnnnnnnn is the client_address.

Explanation: The REXX Web connector for MVS server sent data to the client browser. This message is
displayed only when TRACE(YES).

013 Server closing

Explanation: The REXX Web connector for MVS server is closing.

014 Log and stats

Explanation: The internal REXX Web connector for MVS server routine to process the log and do internal
statistics was called. This can only occur when TRACE(YES) is specified in BLMWWEBS.

015 Waiting for incoming connection request

Explanation: The REXX Web connector for MVS server waits for an incoming client browser connection. This
message is displayed only when TRACE(YES) was specified.

016 Reading request data

Explanation: The REXX Web connector for MVS server has accepted a client browser connection. It now
begins the read of the incoming data stream. This message is displayed only when TRACE(YES) was specified.

017 Processing request

Explanation: The REXX Web connector for MVS server has read the client browser data. It now starts
processing whatever request is in the data. This message is displayed only when TRACE(YES) was specified.

018 Doing housekeeping

Explanation: This message indicates internal processing is being done to restore the server to its initial state.
This message is displayed only when TRACE(YES) was specified.

019 Connection to client lost

Explanation: Transmission of data was interrupted by the client browser. REXX Web connector for MVS
server waits for the next client browser connection.

Log Codes

25World Wide Web Interface Guide

6.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

M
V

S
--

L
o

g
g

in
g

021 Server restarting. Count number mmmm. Count limit 5.

Explanation: An error condition resulted in the REXX Web connector for MVS server restarting its processing.
The current processing iteration and count limit before shutting down are displayed. The count limit is 5.

022 Error processing URI. mmmm nnnnnnnnnnnnnn

Explanation: The HTTP header response code field is set with code mmmm and text nnnnnnnnnnnnnn and sent
back to the remote client browser.

023 Directive error. Tag value nnnn not recognized.

Explanation: While processing a SERVER directive, the REXX Web connector for MVS server detected an
invalid tag value nnnn or invalid tag nnnn.

024 Routine mmmm entered. Arguments p1 p2 p3

Explanation: This informational code displays the routine name and arguments upon entry to an internal REXX
Web connector for MVS server routine. This can only occur when EXECFLOW(YES) is specified in
BLMWWEBS.

025 Reading data from nnnnnnnn

Explanation: The REXX Web connector for MVS server attempts to read a data set such as an HTML file.

026 nnnnnn records read.

Explanation: The REXX Web connector for MVS server successfully read a number of records from a data set
such as an HTML file.

027 File loaded. Elapsed time was: nnnnnn

Explanation: Statistical information giving the time it took to read records from a data set such as an HTML
file.

029 Transaction nnnnnnnn scheduled.

Explanation: The number of the current browser transaction. This code comes out before the transaction is
processed by the Gateway router.

030 Gateway completed transaction tran_cnt elapsed time ss.ssssss

Explanation: The gate completed transaction tran_cnt in an elapsed time ss.ssssss.

031 Command command received from user address address

Explanation: Command command was sent to the REXX Web connector for MVS server by a client with user
id user and IP address address

032 Error calling gateway router exec. mmmmmm nnnnnn

Explanation: The REXX Web connector for MVS server called the gateway router routine BLMWSWRT to
process a form and BLMWSWRT returned with an error condition or was not found. (mmmmmm is the error
condition and nnnnnn is the message returned.) The error condition may be from a forms processing routine
which BLMWSWRT called. A message with additional information is also sent to the remote client browser.

Log Codes

26 Version 7.1

033 Syntax error, code nnnn

Explanation: A REXX syntax error was encountered within BLMWWEBS. Restart the Web connector feature
and if the problem persists, save the output and contact the IBM Support Center.

034 Server running nnnnnnnn started

Explanation: The server type is displayed.

035 Host name is mmmmmmmm

Explanation: The MVS hostname derived from a TCP socket gethostname call is displayed.

036 Host IP address is ipaddr

Explanation: The MVS host IP address from a TCP socket gethostid call is displayed.

037 Listening to port nnnn

Explanation: The port specified for this server is displayed.

038 Socket number in use is nnnn

Explanation: The socket assigned for the server TCP socket calls is displayed.

050 Process parameter in effect: mmmmmmmm(nnnn)

Explanation: This informational message displays a parameter and its value passed to the REXX Web
connector for MVS server via JCL. If not specified in the JCL, the default value for the parameter is displayed.

051 Routine name: BLMWWEBS. Environment:mmmmm

Explanation: The REXX Web connector for MVS BLMWWEBS routine started under the listed environment
mmmmm (usually TSO).

055 Writing data to xxxxx

Explanation: An HTTP put request is being run against the file xxxxx

056 xxxxx records filed.

Explanation: An HTTP put request wrote xxxxx records to a file.

057 File stored. Elapsed time was nnnnnn.

Explanation: An HTTP put request has completed in the specified elapsed time.

061 Invalid mode option nnnnnn; specify ASCII or BINARY.

Explanation: The mime types table input has a syntax error in the translation mode field.

Log Codes

27World Wide Web Interface Guide

6.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

M
V

S
--

L
o

g
g

in
g

062 Invalid cache option nnnnnn; specify CACHE or NOCACHE.

Explanation: The mime types table input has a syntax error in the caching mode field.

063 Invalid media type specified nnnnnn.

Explanation: The mime types table input has a syntax error in the media-type field.

064 Housekeeping finished. Elapsed time:nnnnnn

Explanation: The housekeeping process has completed. The elapsed time is indicated.

065 Cache cleanup. The following entry released:nnnnnn

Explanation: During the housekeeping process, a cache entry was cleared because of the cache utilization
exceeding the maximum allowed. This message is issued when the TRACE option is active and helps to track
cache utilization.

066 Unexpected data received when reading request:nnnnnnnn

Explanation: This message is issued when the Web browser sends data to the server that is not required to
process the HTTP request. The most likely cause of this problem is the use of an additional CRLF sequence that
is not required by the HTTP protocol. This protocol violation should be tolerated, though, and the message is
mostly information. A CRLF sequence will be reflected as OD25 in EBCDIC. The nnnnnn value presents the
first 25 bytes of data received in hexadecimal format.

067 Request header: nnnnnn

Explanation: This message is issued when the TRACE option is active and shows the content of a request
header present in the HTTP request being processed.

068 Request:nnnnnnnn

Explanation: This message is issued when the TRACE option is active and shows the HTTP request received
from the Web browser and now being processed.

069 Output from TSO commands:nnnnnnnn

Explanation: This message is issued when the TRACE option is active and shows the output from TSO
commands issued internally during an HTTP put request process.

Log Codes

28 Version 7.1

REXX Web connector for MVS––URL
Considerations

Uniform Resource Locators (URLs) represent hypermedia links and links to network
services within HTML documents. It is possible to represent nearly any file or service on the
Internet with a URL.

The URL can be considered as simply the network equivalent of a file name. The data
referred by the URL can exist on any machine on the network, can be served via any of
several different methods, and might even be something more complex than a file. URLs can
point to queries, to documents stored within databases, to the results of a command, or to
whatever the provider decides to send.

Note: URLs accepted by the REXX Web connector for MVS server are not case-sensitive.

Static URLs
With the REXX Web connector for MVS, you can refer to an HTML document stored in a
partitioned data set defined by the BLMWSWEB parameter HTML() or, when using the
algorithmic URL-to-dataset mapping, to any type of file stored in a partitioned data set
member.

Static URLs are maintained by the REXX Web connector for MVS administrator, who has
access to the MVS system where the REXX Web connector for MVS is running.
Maintenance can be performed directly on the MVS system, for example using the PDF
editor to modify an HTML document, or a workstation-based HTML publishing system can
be used to create and/or update HTML documents, images, JAVA code, or any other content
and store it in the MVS data sets by means of an HTTP PUT request.

The TCP/IP file transfer program (FTP) can also be used to transfer files, such as images,
HTML or any other file type, to the MVS system, to be later retrieved using the REXX Web
connector for MVS. File transfers should be made using BINARY or ASCII mode depending
on the media type of the file being transferred. Please see “The Media Types Table” on
page 33.

Static URLs may be cached by the REXX Web connector for MVS server the first time it is
accessed, and it will stay in the cache area until the Web server is closed or the
DROP_CACHE command is issued (see “REXX Web connector for MVS Server
Commands” on page 21).

7

29World Wide Web Interface Guide

7.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

M
V

S
––U

R
L

Caching of a specific URL depends on the attributes assigned to it by the REXX Web
connector for MVS. Please see the“The Media Types Table” on page 33 for a discussion of
the caching-mode attribute.

Dynamic URLs
Dynamic URLs are generated by the DGA when a request that is mapped to a Forms
Processing Routine (FPR) by the router is received.

The FPR accesses the Tivoli Information Management for z/OS database when necessary,
performs any calculations required, and formats data to be sent back to the client. This is a
real-time operation, and the result is sent to the client as soon as the operation is complete.
The same request can generate different HTML output in successive invocations, as the
operations are performed against a live database that might have changed between requests.

Such is the case where a URL does not point to a file, but to a database query. In fact, a
FPR call can be equivalent to a database query directed to the Tivoli Information
Management for z/OS database.

The REXX Web connector for MVS server adds HTTP headers PRAGMA: no-cache and
LAST-MODIFIED: to dynamic URLs to prevent caching by proxy servers and Web
browsers.

The REXX Web connector for MVS server will expire a document using the value specified
on the LIFESPAN unless the form contains the INFOWEB directive, described in “InfoWeb
Directive Support - Expiring a Document” on page 33.

Static HTML
Static HTML is HTML source code that is pointed to by a Static URL.

Dynamic HTML
Dynamic HTML is HTML source code that is pointed to by a Dynamic URL.

Dynamic-URL Mapping to a Forms Processing Routine
Any URL that contains the REXX extension or is received as a result of a POST request is
considered dynamic and mapped to an FPR. The router REXX program BLMWSWRT is
responsible for calling the appropriate FPR associated with the URL. Note that URLs that
refer to an FPR need not include the name of the FPR itself; instead, a codename is mapped
to the FPR by the router. The URL should contain this name as a unique identifier. One FPR
can be mapped to many different codenames by the router, but only one FPR can be
associated with any given codename. The codename is obtained from the URL by
eliminating the leading protocol, host and path information and the trailing extension. For
example, if the URL was http://mvs20:8000/DEMO/CODE/CREATE.REXX the prefix
http://mvs20:8000/DEMO/CODE/ is eliminated, as is the REXX extension, leaving CREATE
as the codename to be referenced.

This mapping process is used by the DGA router routine to translate URLs to FPR
references. If the router does not explicitly define a codename to be accepted as part of a
dynamic URL, the REXX Web connector for MVS server will reject the request and inform
the user accordingly.

Static URLs

30 Version 7.1

This mode of operation is required to prevent users from running code from anywhere in the
MVS system. They can only run REXX code from the SYSEXEC or SYSPROC
concatenations in the REXX Web connector for MVS JCL.

Static-URL to Data Set Mapping
The REXX Web connector for MVS provides support for an algorithmic URL-to-data set
mapping. The algorithm is backwards-compatible with the method used in previous releases.

In order to convert a URL (Universal Resource Locator) to an MVS data set name, the
following elements are taken into account by the mapping algorithm:

¶ The DOCUMENTROOT parameter of the BLMWWEBS command (see 13 for
additional information about this parameter.)

¶ The URL specified in the Web browser HTTP request.

¶ The media types table, described in “The Media Types Table” on page 33. This table is
used to assign certain attributes to the data based on the extension given. Extension is
the last component of the URL; for example, in the URL
http://mvs20:8888/demo/test.html the extension is HTML, which indicates that the
data is HTML source. Following the same mechanism, an GIF extension would indicate
an image in gif format, an MPEG extension would indicate a movie in mpeg format, and
so on. The media types tables provides the information required to properly identify the
content-type based on the extension.

¶ The use of the INFOWEB marker in the URL. URLs with this marker will be mapped
using the same mechanism used in earlier releases of this product. In this case, the URL
will have the format <http>://<host:port>/INFOWEB/<name>.<HTML>. If the extension
is omitted, then HTML is substituted. The URL will be mapped to a member in the
partitioned data set specified in the HTML parameter of the BLMWWEBS command.
The member name is obtained from the URL by eliminating the leading protocol, host
and path information and the trailing extension. For example, if the URL was
http://mvs20:8000/INFOWEB/DEMO/CODE/CREATE.HTML. the prefix
http://mvs20:8000/DEMO/CODE/ is eliminated, as is the HTML extension, leaving
CREATE as the member name to be referenced. For example, in the case of
http://mvs20:8001/INFOWEB/blmwhdbm. there must be a member named
BLMWHDBM in the HTML data set for this URL to be accepted by the REXX Web
connector for MVS

¶ If the URL does not contain the INFOWEB marker as in the previous case, a mapping
algorithm will be used. The algorithm will combine the value of the
DOCUMENTROOT parameter of the BLMWWEBS command (see 13 for a description
of this parameter) and data derived from the URL specified. Consider the general format
of the URL as http://<host:port>/qual-1/qual-2/qual-3/.../qual-n/name.ext.
the REXX Web connector for MVS will take the value of the DOCUMENTROOT
parameter, and use it as the initial portion of the target data set name, concatenate all the
qualifiers using a period as a separator, use the extension as a suffix and finally use the
name specified as the member to be referenced. The data set name obtained will be
translated to uppercase to conform with MVS naming conventions.
http://<host:port>/qual-1/qual-2/qual-3/.../qual-n/name.ext. will translate
to documentroot.qual-1.qual-2.qual-3.....qual-n.ext(name)

Note: The document root value provides additional security to the REXX Web
connector for MVS by restricting the data set names that can be referenced by an

Mapping to a Forms Processing Routine

31World Wide Web Interface Guide

7.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

M
V

S
––U

R
L

HTTP request. For example, if the URL is
http://mvs20:8888/demo/version1/mainpnl.htmland the document root
parameter value is INFOMAN.WEB.CONNECTOR then the data set name generated by
the algorithm is INFOMAN.WEB.CONNECTOR.DEMO.VERSION1.HTML(MAINPNL)

The fact that the URL is converted to an MVS data set name effectively propagates those
limitations on what names and qualifiers can be used for the REXX Web connector for MVS
URLs.

Note: The REXX Web connector for MVS will not create a new partitioned data set as a
result of a PUT request, but it will create a new member if required.

When creating the partitioned data sets that will be referenced by the Web connector, you
should follow some allocation standards. “Allocation Partitioned Data Sets To Be Used with
the REXX Web connector for MVS” contains additional information regarding possible
standards.

Allocation Partitioned Data Sets To Be Used with the REXX Web
connector for MVS

The REXX Web connector for MVS will read or write data to MVS partitioned data sets.
The recommended data control block (DCB) parameters to be used for the allocation are as
follows: For binary (octet-stream) data, you should use a minimum logical record length of
8192 bytes (LRECL=8192), and a blocked, variable record length format (RECFM=VB). For
ASCII (text) data you should use a logical record length larger than the longest record that
you intend to store. A recommended value is 1024. The record format should also be
blocked, variable record length (RECFM=VB). If you intend to edit this data using MVS
editors (such as the ISPF/PDF editor) the maximum record length accepted by the editor
may be a limiting factor. If you intend to edit your HTML code using workstation editors
only, you can use any logical record length value up to the maximum accepted by your
MVS system.

Include Directive Support
The REXX Web connector for MVS provides two forms of Server Side Include (SSI)
directive support. The syntax is the following:
<!--#INCLUDE FILE=name.extension -->

where name is the name of a static HTML source member from your HTML partitioned data
set or
<!--#INCLUDE VIRTUAL=/qual-1/qual-2/.../qual-n/name.extension -->

where /qual-1/qual-2/.../qual-n/name.extension is the fully qualified name (also called the
virtual path) of a static HTML document.

Static and Dynamic HTML source is scanned for include directives by the REXX Web
connector for MVS server before sending response data to the Web browser client.

Nested include directives are supported by the REXX Web connector for MVS server code.

Static-URL to Data Set Mapping

32 Version 7.1

InfoWeb Directive Support - Expiring a Document
The REXX Web connector for MVS provides a server side directive to expire an HTML
document. Static and dynamic HTML source is scanned for the INFOWEB directive by the
REXX Web connector for MVS server before sending the response data to a Web browser
client. In the following examples, the directive, tag, and its value can be uppercase or
lowercase. The actual operation depends on the browser and the options chosen by the user
that relate to the method by which the browser manages it cache.

<!--#INFOWEB EXPIRES=NOW-->
When the directive NOW is used, the server will place EXPIRES and
PRAGMA:NOCACHE into the HTTP header. If supported by the browser, this will
cause the browser to request the form be re-sent from the server instead of being
retrieved from the cache.

<!--#INFOWEB EXPIRES=NEVER-->
When the directive NEVER is used, the server will not place EXPIRES and
PRAGMA:NOCACHE into the HTTP header. This will prevent the browser from
requesting the form to be re-sent. The browser will use the copy from its cache, if
available.

<!--#INFOWEB EXPIRES=nnnnnn-->
nnnnnn is a numeric value in the range 1–9999999 and is the number of minutes the
form is considered valid. After the specified number of minutes has elapsed, the
browser may request the form be re-sent. Until then, the browser can use the form
from its cache.

The Media Types Table
The primary use of the media types is to assign a content-type to a Uniform Resource
Locator (URL) based on the extension specified in the URL. Two other attributes are
assigned using the media types table: one is the translation mode, and the other is the
caching mode.

¶ EXTENSION is the key to the table. It is obtained from the URL being processed.
Examples of extensions are HTML, GIF, JPEG, MPEG, and CLASS.

¶ CONTENT-TYPE specifies what data typing applies to the URL. For example, for a GIF
image, the content-type is IMAGE/GIF. For HTML source the content-type is TEXT/HTML.
The syntax of the content type field is:
<type>/<subtype>

Parameters as defined by the HTTP 1.0 protocol are not supported. Content-type is also
called media type and mime type.

Many media types are defined by Internet standards maintained by the Internet Assigned
Number Authority (IANA). See the RFC 2048 for more information on how the registered
media types are administered. Note that the HTTP protocol recommends following the
standards when applicable, but does not restrict the use of unregistered content-types. As
long as the client and server can successfully interpret the content-type exchanged, the use
will be valid.

Translation Mode
specifies if the data received should be converted from ASCII to EBCDIC or
vice versa. The two possible values for this field are ASCII and BINARY.

Expiring a Document

33World Wide Web Interface Guide

7.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

M
V

S
––U

R
L

ASCII implies translation, and is commonly used for text. For example, for a
content-type of text/html, the translation mode could be ASCII, in which
case MVS-based editors can be used on the data. For a content-type of
image/gif, the translation mode should be BINARY, because the data should
not be modified using MVS-based tools.

Caching mode
specifies whether the data could be cached by the Web connector internal
caching mechanism.

Note: The caching mode is not used to influence caching by the Web
browser itself. This attribute influences behavior at the server side,
not at the client side. To modify the behavior of the client caching
algorithm, see “InfoWeb Directive Support - Expiring a Document”
on page 33.

The format of the table is as follows:

¶ Any line that starts with an asterisk (*) or a slash asterisk (/*) is treated as a comment.

¶ All other lines relate an extension to a media type. There are four fields per line. Each
field is made up of one single token. The position of the field in the line is not
important, although it is convenient to maintain fields aligned in columns. The first field
is the extension, the second the content-type, the third is the translation mode, and the
fourth is the caching mode. Any data following is considered a comment.

This is a copy of the sample table provided in SBLMSAMP(BLMWMIME):
*
* Media Type table.
*
* The format of this table is as follows:
* Any line that starts with an asterisk (*) is a comment.
* All other lines identify a mime type. There are four fields per line
* with input data. Each field is made up of one single token.
* The positioning of the field in the line is not important,
* although it is convenient to maintain fields aligned in columns.
* Here is the meaning of each data field:
*
* 1 - Extension name
* The extension name is used as the key to determine
* the media type.
* Extension names can have any value.
*
* 2 - Media Type (also called content-type and mime-type)
* The media type identifies what kind of data is present
* Media types are defined by internet standards maintained
* by the IANA, Internet Assigned Number Authority. See
* the RFC 2048 for more information on how the media types
* are administered. The list presented here is not
* exhaustive, if any new media type is required, a new
* entry should be added to this table.
*
* 3 - Translation mode
* Indicates if the data should be converted
* from EBCDIC to ASCII or viceversa.
* Should be coded as binary (no translation) or ASCII.
*
* 4 - Caching mode
* Indicates if the data can be cached by the
* web connector.
* The primary use of this field is to allow for

The Media Types Table

34 Version 7.1

* caching of static HTML. Binarys are usually cached
* by the browser. Generally speaking, the only extensions
* that should be cached are HTML, HTM and TXT.
*
* Any data after the fourth field is considered a comment.
* All the fields are case-insensitive.
*
* Change Activity:
* $L1=DCR521 HOYT100 970721 DMGPGTR: OS/390 web connector
*
*Ext Media-Type Mode Cache? Comments
*---- ------------------------------ ------ ------- --------------------

aif audio/aiff binary nocache // AIFF
aifc audio/aiff binary nocache // AIFF
aiff audio/aiff binary nocache // AIFF
art image/x-jg binary nocache //
au audio/basic binary nocache //
avi video/avi binary nocache //
bin application/octet-stream binary nocache // Unspecified binary
class application/x-java binary nocache // java class
crt application/x-x509-ca-cert binary nocache // certificate
css text/css binary nocache //
der application/x-x509-ca-cert binary nocache // certificate
dll application/x-msdownload binary nocache //
eml message/rfc822 binary nocache // Internet Mail Message
ps application/postscript binary nocache //
eps application/postscript binary nocache //
ai application/postscript binary nocache //
exe application/x-msdownload binary nocache //
fif application/fractals binary nocache //
gif image/gif binary nocache //
gz application/x-gzip binary nocache //
hqx application/mac-binhex40 binary nocache //
htm text/html ascii cache //
html text/html ascii cache //
iii application/x-iphone binary nocache //
ins application/x-internet-signup binary nocache // x-internet-signup
isp application/x-internet-signup binary nocache // x-internet-signup
jpg image/jpeg binary nocache // JPEG
jfif image/jpeg binary nocache // JPEG
jpeg image/jpeg binary nocache // JPEG
jpe image/jpeg binary nocache // JPEG
js application/x-javascript ascii cache // Javascript source/code
latex application/x-latex binary nocache // LATEX
man application/x-troff-man binary nocache //
mov video/quicktime binary nocache // Quicktime Video
movie video/x-sgi-movie binary nocache //
mpg video/mpeg binary nocache // MPEG
mpe video/mpeg binary nocache // MPEG
mpeg video/mpeg binary nocache // MPEG
mp2 video/mpeg binary nocache // MPEG
enc video/mpeg binary nocache // MPEG
mpa video/mpeg binary nocache // MPEG
m1v video/mpeg binary nocache // MPEG
nsc application/x-conference binary nocache //
nws message/rfc822 binary nocache // Internet News Message
qt video/quicktime binary nocache //
ram audio/x-pn-realaudio binary nocache // RealAudio
ra audio/x-pn-realaudio binary nocache // RealAudio
rpm audio/x-pn-realaudio-plugin binary nocache //
sit application/x-stuffit binary nocache //
snd audio/basic binary nocache //
tar application/x-tar binary nocache //
tgz application/x-compressed binary nocache //
tif image/tiff binary nocache //
tiff image/tiff binary nocache //

The Media Types Table

35World Wide Web Interface Guide

7.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

M
V

S
––U

R
L

txt text/plain ascii cache // Text - 7 bit
uls text/iuls binary nocache //
wav audio/wav binary nocache //
xbm image/x-xbitmap binary nocache //
z application/x-compress binary nocache //
zip application/x-zip-compressed binary nocache //
323 text/h323 binary nocache //

The Media Types Table

36 Version 7.1

REXX Web connector for MVS and REXX
Web connector for OS/390 -- REXX
Globals

The REXX Global Variable (RGV) Service is shipped as part of the REXX Web connector
for MVS and as part of the REXX Web connector for OS/390 so that Database Gateway
Applications can share REXX variables among several REXX routines.

The sample Database Gateway Application (DGA) uses the RGV service to define a global
space name.

Once this is defined, the DGA issues RGV calls to store and retrieve REXX variables from
this global space.

RGV Service Invocation
REXX EXECs may create, update, read, write and drop RGVs. Provision is made for
reading and writing multiple variables in a single function call. Variables may be specified
generically by suffixing an asterisk * to their name.

Names for RGVs conform to the same naming rules as for REXX variables. When an RGV
is accessed, a REXX variable of the same name will be set to the value of the RGV.
Similarly, when setting a global variable, the value will be taken from a REXX variable of
the same name.

There is no limitation on values, value lengths, names, or name lengths other than those
limitations imposed by REXX.

RGVs are grouped into “variable spaces”, each of which will be referred to by a name
specified by the user.

The space name may be any combination of characters up to 15 in number. More than one
variable space may be in use at one time. There is no interaction between variable spaces, so
they may contain similarly named variables. This concept permits instances of sets of
variables of the same name to be maintained.

Function Call Syntax
The RGV interface is implemented as a group of external REXX function calls.

All calls return a REXX result of the form:
<rc> <message>

8

37World Wide Web Interface Guide

8.
R

E
X

X
G

lo
b

als

where <rc> is a numeric code indicating the level of success and <message> is a qualifying
message.

Codes signify level of success and are not grouped according to reason.

Functions

BLMXSMK
Create an RGV variable space.

Syntax: result=blmxsmk(<space_name>,<level>)

Input:

<Space Name> User-defined name 1 to 15 characters.

<Level> TASK | JOBSTEP

Return:
RC 0 => success
RC 4 => space already exists
RC 12 => parameter error(s)
RC 20 => system service failure

BLMXSDR
Destroy a RGV space and all variables assigned to it.

Syntax: result=blmxsdr(<space_name>,<level>)

Input:

<Space Name> User-defined name 1 to 15 characters.

<Level> TASK | JOBSTEP

Return:
RC 0 => success
RC 4 => space does not exist
RC 12 => parameter error(s)
RC 20 => system service failure

REXX variables are not updated by this function call.

BLMXVPT
Write one or more REXX variables to an RGV space.

Syntax: result=blmxvpt(<space_name>,<level>,<var_name1>,<var_name2>,.)

Input:

<Space Name> User-defined name 1 to 15 characters.

<Level> TASK | JOBSTEP

<var_name1>.. List of REXX variable names. Names may
be specified generically by suffixing with an
asterisk (*).

Return:
RC 0 => success
RC 4 => REXX variable is uninitialized
RC 8 => space does not exist

RGV Service Invocation

38 Version 7.1

RC 12 => parameter error(s)
RC 20 => system service failure

BLMXVGT
Read one or more global variables and set them to a REXX variable.

Syntax: result=blmxvgt(<space_name>,<level>,<var_name1>,<var_name2>,..)

Input:

<Space Name> User-defined name 1 to 15 characters.

<Level> TASK | JOBSTEP

<var_name1>.. List of REXX variable names. Names may
be specified generically by suffixing with an
asterisk (*).

Return:
RC 0 => success
RC 4 => A global variable does not exist
RC 8 => space does not exist
RC 12 => parameter error(s)
RC 20 => system service failure

BLMXVDR
Drop one or more RGV variables and free the storage they occupy.

Syntax: result=blmxvdr(<space_name>,<level>,<var_name1>,<var_name2>,..)

Input:

<Space Name> User-defined name 1 to 15 characters.

<Level> TASK | JOBSTEP

<var_name1>.. List of REXX variable names. Names may
be specified generically by suffixing with an
asterisk (*).

Return:
RC 0 => success.
RC 4 => A global variable does not exist
RC 8 => space does not exist
RC 12 => parameter error(s)
RC 20 => system service failure

REXX variables are not updated by this function call.

Using RGV Services -- an Example
To illustrate how a REXX application would use the RGV service, we will look at two of
the sample DGA forms that are provided, BLMWFCRT (Create record) and BLMWSFIN
(Initialize HLAPI/REXX).

The SPACENAME parameter global is passed as a parameter to BLMWFCRT; in addition,
BLMWFCRT issues the RGV service BLMXVGT which retrieves all variables from the
pool of Global Variables that begin with blg* (the * is the “wildcard” indicator):

RGV Service Invocation

39World Wide Web Interface Guide

8.
R

E
X

X
G

lo
b

als

result = blmxvgt(GLOBAL,'JOBSTEP','blg*')
parse var result result result_text

The result is checked for a failure condition. If the failure condition is that the RGV service
has not been initialized (result = 8), then BLMWSFIN, the initialization form REXX
routine, is invoked.
if result > 8 then return '400' 'Global variable error.' result_text;
if result = 8 then do;
call BLMWSFIN(GLOBAL); /* API not initialized */

BLMWSFIN initializes the HLAPI/REXX API and calls BLMXSMK so that an RGV space
can be started.
/** Initialize RGV **/
result = BLMXSMK(GLOBAL,'JOBSTEP')

BLMWSFIN then stores the blg* variables set by the HLAPI/REXX in the REXX global
space by calling BLMXVPT. The one variable needed by other REXX form routines is
BLG_ENVP. Control returns to the calling routine BLMWFCRT.
result = blmxvpt(GLOBAL,'JOBSTEP','blg*')

BLMWFCRT now retrieves the blg* global variables by issuing the BLMXVGT service.
This occurs whether the BLMWSFIN routine was entered on the present or a previous Web
browser transaction.
result = blmxvgt(GLOBAL,'JOBSTEP','blg*')

For the purposes of this sample, BLMWFCRT needs only the REXX variable BLG_ENVP
restored prior to calling the HLAPI/REXX.

Using RGV Services -- an Example

40 Version 7.1

The Database Gateway Application

Overview of the Database Gateway Application
The Database Gateway Application (DGA) provides the gateway services to your system
database.

The Database Gateway Application consists of REXX programs, known as forms processing
routines (FPRs), and HTML documents.

The operation, interface, and means of modifying the DGA are described in this chapter.
Also described are the REXX Web connector for MVS and the REXX Web connector for
OS/390 service routines (which are shipped as source), as well as their relationship to the
DGA components.

The Database Gateway Application operates according to the protocol of whichever Web
server called it. The entire Database Gateway Application template can be used as is, or can
be modified or enhanced to fit your needs. The source for the service routines supplied by
the REXX Web connector for MVS and the REXX Web connector for OS/390 can also be
modified for your application needs.

Figure 5 on page 42 illustrates how the REXX Web connector for MVS and the REXX Web
connector for OS/390 each interface with the DGA and service routines.

9

41World Wide Web Interface Guide

9.
T

h
e

D
atab

ase
G

atew
ay

A
p

p
licatio

n

DGA REXX Forms Processing Routines (FPRs)
The forms processing routines (FPRs) use REXX code, REXX HLAPI calls, and custom
services provided by the service routines to process HTTP requests received from client
machines using Web browsers as their Graphical User Interface (GUI). Forms processing
routines have different characteristics, depending on which environment, the REXX Web
connector for MVS or the REXX Web connector for OS/390, called them:

REXX Web connector for MVS
The forms processing routines are passed key environment variables. Some of the
overhead of processing environment data is simplified by this Web server; for
example, form input data is contained in a single environment variable, and there is
no need to process the data according to its method of GET or PUT. The REXX
QUEUE statement is used to return HTML data.

REXX Web connector for OS/390
The forms processing routines are HTTP Server for OS/390 GWAPI REXX
programs which utilize GWAPI services to access environment variables, set HTTP
content fields, and return HTML data to the client browser.

Figure 5. Web connector Interfaces

DGA REXX FPRs

42 Version 7.1

|

How DGA REXX Forms Processing Routines (FPRs) Are Invoked
The sample DGA forms processing routines are called by the Web server router module
BLMWSWRT when an HTML form is processed from a remote browser and received as a
HTTP data stream by the Web server. Normally, a call to a DGA forms processing routine is
initiated by a form tag within the HTML processed by the remote browser. For example, the
Search HTML sample BLMWHSCH has the form tag:
<form action=SEARCH.REXX method=GET>

When your Web browser processes the BLMWHSCH HTML, the form action
SEARCH.REXX and any input fields are sent as an HTTP request string to the Web server
(either the REXX Web connector for MVS or the REXX Web connector for OS/390). The
Web server recognizes that a REXX forms processing routine is to be invoked, and passes
control to the form router BLMWSWRT to call the Search forms processing routine.

Forms processing routines may also be invoked from HTML hyperlinks, as in the case of the
List records opened today option from the BLMWHDBM HTML:

List records opened today

In this example, the SEARCH.REXX is processed in the same way by the REXX Web
connector for MVS, meaning the Search forms processing routine is called. The
?TODAY=YES is user input, which is passed to the forms processing in the BODY
parameter for the REXX Web connector for MVS; for the REXX Web connector for OS/390
server, the BODY is extracted from an HTTP environment variable QUERY STRING.

The REXX Web connector for MVS Server Service Router -
BLMWSWRT

The routine BLMWSWRT is invoked by the REXX Web connector for MVS server and the
REXX Web connector for OS/390 when an FPR is to be called. While the routine name and
called interface must always remain intact, the rest of the processing can be modified by the
user.

REXX Web connector for MVS interface

The following parameters are passed to BLMWSWRT:

URL The HTTP URL (Universal Resource Locator) passed unmodified
from the remote client browser.

MEMBER The REXX routine name in the URL. The sample router translates
this member name to an actual MVS/ESA REXX FPR and calls it.

BODY The body portion of the URL being processed. This is the string
following the ? character. For example, if the URL is:
SEARCH.REXX?TODAY=YES

the body parameter would be:
TODAY=YES

To facilitate parsing in FPRs, the & character which denotes
separation between HTTP name/value pairs is translated to a X'FF'.

CLIENT The REXX Web connector for MVS client address, port number, and
client domain in the form:
CLIENTAD:clientport clientdomain

DGA REXX FPRs

43World Wide Web Interface Guide

9.
T

h
e

D
atab

ase
G

atew
ay

A
p

p
licatio

n

USER If AUTHORITY(YES), the user field specified from the remote
client browser authentication window is decoded by the security exit
BLMWSWSE and passed to the DGA. If AUTHORITY(NO), the
user field is null.

TRANCNT The number passed to the DGA as a unique identifier for the
transaction.

REQ_HEADER
The HTTP request header sent by the remote client browser.

ATABL The ASCII character set table returned from a call to the
BLMWSWAS routine.

SERVER The REXX Web connector for MVS server address and port number
in the form yyyyyy.zzzz where yyyyyy is the server address and
zzzz is the port number.

REXX Web connector for OS/390
No parameters are passed for the REXX Web connector for OS/390. A subset of the
variables listed above for the REXX Web connector for MVS are extracted using the
IMWXRD call described in described in the HTTP Server Planning, Installing, and
Using V5.2 for OS/390 (look for information about writing GWAPI programs).

BLMWSWRT Operation
The DGA template provided maps the URL passed to an actual FPR and calls that routine.

REXX Web connector for MVS
The FPR should inform the REXX Web connector for MVS server of any error
condition by returning data using the REXX statement, as follows:
RETURN code message

Where
code Normal completion or error from the forms processing routine or

router.
message A message string or null.

REXX Web connector for OS/390
REXX routines invoked by BLMWSWRT may return non-zero return codes, but
BLMWSWRT must always pass back a return code of 200 to the REXX Web
connector for OS/390 server.

Sample DGA REXX Forms Processing Routines
The REXX Web connector for MVS and the REXX Web connector for OS/390 provide the
following sample forms processing routines to illustrate how a DGA application can be
constructed:

BLMWFCRT Create record routine

BLMWFRVW
View record routine

BLMWFSCH Search record routine

DGA REXX FPRs

44 Version 7.1

DGA REXX Forms Processing Routines Interface
Each of the above routines shares a common set of parameters upon invocation by the
REXX Web connector for MVS router BLMWSWRT (these were more fully described on
page 43):

BODY The body portion of the URL being processed (see page 43).

USER The user field specified (see page 44).

SERVER The REXX Web connector for MVS server address and port
number (see page 44).

ICAPI A flag indicating whether the DGA is running in a REXX
Web connector for MVS environment or a REXX Web
connector for OS/390 environment

SPACENAME The name of the space for RGV invocations.

DGA REXX Forms Processing Routines Operation
Each of the forms processing routines processes a specific Tivoli Information Management
for z/OS transaction requested by the remote client browser. Each performs the following:

¶ Uses the REXX global function to retrieve and store shared REXX variables such as
retrieving the REXX HLAPI environment variable BLG_ENVP (see “REXX Web
connector for MVS and REXX Web connector for OS/390 -- REXX Globals” on
page 37 for additional information on REXX globals).

¶ Parses the input data (BODY) passed by the remote client browser and sets input REXX
HLAPI data variables. For example the parse statement in BLMWFCRT
Parse upper var body 1 'S0B2D='s0b2d(ff) ,
1 'S0B9B='s0b9b(ff) ,
1 'S0BE7='s0be7(ff) ,
1 'S0B59='s0b59(ff) ,
1 'S0E0F='s0e0f(ff)

searches and sets matching s-word variables with values from the input parameter body.

¶ Calls the REXX HLAPI to submit the requested transaction. The subroutine INFO_API
accomplishes this.

¶ Returns data to the remote client browser.

REXX Web connector for MVS
For normal completion of a transaction, data and messages are queued on the
REXX stack, and a return code of 201 is set. The return statement is always of
the form
RETURN code message

Where:
code Normal completion or error.
message A message string or null. Normal completion output is queued

on the REXX stack.

Error conditions return with an error code such as 502 with an error message
string; for example:
RETURN 502 The DESCRIPTION field is blank

Sample DGA REXX FPRs

45World Wide Web Interface Guide

9.
T

h
e

D
atab

ase
G

atew
ay

A
p

p
licatio

n

REXX Web connector for OS/390
Data is returned to the remote client browser by the IMWXWRT call described
in the HTTP Server Planning, Installation, and Using V5.2 for OS/390 (look for
information about writing GWAPI programs).

Sample DGA REXX Forms Service Routines

DGA REXX Forms Service Routine BLMWSFIN Interface
The REXX Web connector for MVS and the REXX Web connector for OS/390 provide a
sample forms service routine which can be called by any of the other forms processing
routines. This sample forms service routine is BLMWSFIN, and its function is to initialize
the REXX HLAPI session and create REXX globals space. The following information is
passed to BLMWSFIN:

Spacename The name of the space for RGV invocations.

The return statement for BLMWSFIN is of the form
RETURN code message

If the code is non-zero, a message is returned to the caller. You can change the
HLAPI/REXX parameters to conform to the standards of your installation. For example, in
BLMWSFIN, you should change the following values:
application_id='IBMUSER'
session_member='BLGSES00'
privilege_class='MASTER'

Other control variables such as pidt_name, separator_character, text_option, and
text_medium are contained in the FPRs BLMWFCRT, BLMWFRVW, and BLMWFSCH.
You may want to modify these values in the FPRs to meet your needs.

DGA REXX Forms Service Routine BLMWSFTE Interface
Another routine which can be called is BLMWSFTE. This routine is called for the REXX
Web connector for MVS server when the server is terminated by the !CLOSE command or
is explicitly invoked by a browser for the REXX Web connector for OS/390 server. The
purpose of this routine is to perform Tivoli Information Management for z/OS cleanup and
any required application cleanup before the server terminates processing. Failure to use this
routine to properly terminate the Tivoli Information Management for z/OS environment may
cause the Web server to abend.

The following information is passed to BLMWSFTE:

ICAPI A flag indicating whether the DGA is running in a REXX Web connector for
MVS environment or a REXX Web connector for OS/390 environment

Spacename The name of the space for RGV invocations.

Maximum Number of Global Variable POOLS
This equates to the maximum number of concurrent sessions.

DGA return codes
The following codes are used by HTTP FPRs to indicate the success or failure of a request
and provide some information about the cause of the error to the browser client. The code is
placed in the HTTP response code field.
200 Normal completion.

Sample DGA REXX FPRs

46 Version 7.1

201 HTTP Created
400 Error, used for REXX global variable service failures
500 Error, internal service error, such as the forms service routine BLMWSFIN failed
502 Error, general DGA failure such as errors from the REXX HLAPI

HTML Documents
Sample HTML documents provided with Tivoli Information Management for z/OS are:

BLMWHCRT - (Create) Create a new problem management record

BLMWHDBM - (Menu) A menu of choices which serves as a sample REXX Web
connector for MVS home page

BLMWHELG - (Epilog) A standard epilogue for all HTML documents

BLMWHPLG - (Prolog) A standard prologue for all HTML documents

BLMWHSCH - (Search) Display a list of search criteria

BLMWHSAM - (Validation) Sample HTML for validation samples

BLMWHADM - (Link) Link to the ADSM Web Client

Web Server Service Routines
These routines may be called by either the REXX Web connector for MVS or by the REXX
Web connector for OS/390, and provide functions such as ASCII translation to the Web
server. The naming convention used is BLMWSWxx.

Those provided with this release are:

BLMWSWAS Web Service return, returns ASCII to EBCDIC conversion
table

BLMWSWGM Web Service GMT conversion

BLMWSWPA Web Service, provides translation for URL-encoded data to
the normal EBCDIC character set (the URL-encoded
algorithm is defined by the HTTP 1.0 standard). It is used to
convert data received from the browser client to readable
format.

Modifying the Database Gateway Application
Once you have reviewed the DGA program source, you are ready to change it. Here are
some suggestions to help you.

For the REXX Web connector for MVS

¶ Copy the DGA routines and HTML members to another partitioned data set
(PDS) for your testing. In this example, this is called TESTWEB.PDS.

¶ Choose a TCP/IP port number. Update the PORT operand in your JCL to reflect
the new number.

Note: Each active REXX Web connector for MVS Web server must use a
different TCP/IP port. Client machines use the port number to select a
specific Web server with which to communicate.

Sample DGA REXX Forms Service Routines

47World Wide Web Interface Guide

9.
T

h
e

D
atab

ase
G

atew
ay

A
p

p
licatio

n

¶ Copy the sample JCL BLMWJCL, update it as needed, and submit as a batch
job (this process is explained in “Running the REXX Web connector for MVS
Server as an MVS Batch Job” on page 7).

¶ Develop the HTML forms you want to use by using an HTML editor at your
workstation or by working directly with the HTML code in your HTML PDS
and copying the forms to your MVS data set.

¶ If you are using HTML forms processing, you must code an HTML form
processing routine. Test the routine code independently, then copy the tested
routine into TESTWEB.PDS. If you were to use the name MYTEST as the
subroutine name, the hypertext link to invoke the forms processing routine
would look like this:
<a href=MYTEST.REXX?Test Test the new code

For the REXX Web connector for OS/390

¶ Create a new directory and copy the HFS DGA routines and HTML to this
directory for your testing. In the following example, this directory is called
TESTWEB.

¶ Update IBM HTTP Server for OS/390 configuration directives so that
TESTWEB will be picked up.

¶ Develop the HTML forms in your HTML Hierarchical File System (HFS)
directory.

¶ If you are using HTML forms processing, you must code an HTML form
processing routine. Test the routine code independently, then copy the tested
routine into TESTWEB. If you were to use the name MYTEST as the
subroutine name, the hypertext link to invoke the forms processing routine
would look like this:
<a href=MYTEST.REXX?Test Test the new code

Sample Database Gateway Application
The sample DGA depicted on the following pages uses Web Explorer as a browser. The
screens you see may be different if you are using some other browser.

You can start the sample application by issuing the following command from a browser
window:
http://hostname:portnumber/INFOWEB/BLMWHDBM.html

where hostname is the host name of your MVS system and portnumber is the port number
used to access the IBM HTTP Server for OS/390.

If you are using REXX Web connector for MVS, and have specified AUTHORITY(YES) or
you enter a BLMWWEBS command, the first panel presented is the “security” signon
screen. If you have an HTTP Server for OS/390 access control directive defined (Document
Protection and Protection setups), a security signon screen similar to this will appear.

Modifying the DGA

48 Version 7.1

|

|
|

|

|
|

|

Note: When you are using a BLMWWEBS command, the USER NAME field is compared
to the OWNER parameter specified in BLMWWEBS (“BLMWWEBS Parameters” on
page 10). It is case-sensitive.

The sample application provides several choices:

¶ If you select List records opened today, a list of records opened today is displayed.

¶ If you select Search for records, Figure 8 on page 50 is displayed

¶ If you select Create a new problem record, Figure 9 on page 51 is displayed.

¶ If you select ADSM Web Client (Tivoli Storage Manager), Figure 10 on page 52 is
displayed.

¶ If you select Validation Samples Using Java Applets and JavaScripts, the validation
process using supplied applets is started. This process is described in “Overview of the
Sample Programs” on page 54.

Figure 6. Security Signon Screen

Figure 7. Web Connector Feature Home Page

Sample DGA

49World Wide Web Interface Guide

|

9.
T

h
e

D
atab

ase
G

atew
ay

A
p

p
licatio

n

If you selected Search for records on the Web connector feature home page, Figure 8
displays selectable search criteria to search for records.

If you selected Create a new problem record on the Web connector feature home page,
Figure 9 on page 51 is displayed. From this panel, the user can enter information to create a
new record.

Figure 8. Search for Records

Sample DGA

50 Version 7.1

If the record is created successfully, a confirmation message is displayed.

If you selected ADSM Web Client on the Web connector feature home page, Figure 10 on
page 52 is displayed. From this panel, you can provide information that will link to the
ADSM Web Client (Tivoli Storage Manager) interface.

Figure 9. Create a Record

Sample DGA

51World Wide Web Interface Guide

|

9.
T

h
e

D
atab

ase
G

atew
ay

A
p

p
licatio

n

Figure 10. Link to ADSM Web Client Interface

Sample DGA

52 Version 7.1

Using Java and JavaScript to Validate
Data Fields

Data Validation on the Server
When you use the REXX Web connector for MVS or the REXX Web connector for OS/390,
validation of user-entered data is performed within the Tivoli Information Management for
z/OS database which resides on the MVS or OS/390 server. If you have a form containing
fields which need to be validated, the server would validate each field; if any of the fields
contained invalid data, the server returns an error to the user, who would then be required to
resubmit the data. These are the steps involved when data validation for a CREATE record
is done on the server:

1. Data entered by a user is sent to the Web connector server.

2. The Web connector server relays the data entered to a Tivoli Information Management
for z/OS Application Program Interface (API); the API transmits the data to the Tivoli
Information Management for z/OS database, where the data is validated using a robust
validation pattern algorithm to determine if the data is valid.

3. The API returns a response to the server.

¶ If the data is valid, the response indicates that a record was successfully created.

¶ If the data is not valid, the API returns return code BLG_RC and reason code
BLG_REAS.

4. The server passes the message to the client’s browser via HTTP.

This method of data validation on the server is good as long as the user’s input data is valid.
But if the user enters data that is not valid (such as a name field containing a character that
is not among the recognized characters), the user must wait for the server to validate the
data, detect the error, and return the error message to the user. The user must then correct
the data and resubmit it.

Data Validation on the Client Using Java Applets
Tivoli Information Management for z/OS provides a methodology to perform data validation
on the “Client” rather than on the “Server”. This methodology, which uses a combination of
Java and JavaScript, may significantly improve the usability and performance of data
validation. Using such a technique, the user is provided feedback almost instantaneously
about the data entered before anything is sent to the Web server for processing. Three
sample programs which utilize Java “applets” are provided. The validation methods provided
by these programs use the actual validation patterns from Tivoli Information Management
for z/OS for each field passed by the Client browser. The method also knows which fields
are required fields.

10

53World Wide Web Interface Guide

10.
U

sin
g

Java
an

d
JavaS

crip
t

Overview of the Java Applets
Two Java applets are provided to allow data field validation based on validation patterns.
One applet is the Storage applet Blmwjast, which keeps a table of field keys and their
respective validation patterns. Another applet is the Validation applet Blmwjafv, which does
the actual validation of the user’s input data based on the supplied validation patterns.

Validation that Is Supported
These are the types of validation which can be performed by using the supplied Java
applets:

¶ The supplied Java applets support these data validation characters: A, B, C, I, N, Rnn, S,
Vnn, and X (for a complete explanation of these validation characters, see the Tivoli
Information Management for z/OS Panel Modification Facility Guide).

Note: The validation character L is accepted, but left-padding does not occur.

¶ The ability to identify which field is a required field.

¶ The ability to identify whether too much or too little data was entered as it pertains to
the pattern specified.

Validation that Is Not Supported
These types of validation are not performed by the supplied Java applets:

¶ Case-sensitive validation.

¶ DBCS validation.

¶ Left zero padding of input data is not provided. The applet does check to see if the
required number of characters is entered.

¶ In search operations, neither the asterisk * nor the period . are supported.

¶ Equal type patterns (for example =DATE) are ignored.

¶ Multiple response fields.

¶ The Tivoli Information Management for z/OS string type field maximum data length is
not validated.

Overview of the Sample Programs
All of the sample programs are samples of a Problem Record Create HTML form. Each of
the sample programs uses the supplied Java applets to validate input data. If the user
selected Validation Sampler Using Java Applets and JavaScripts from the Web Connector
Home Page, Figure 7 on page 49, the Sample Programs Menu is displayed:

Data Validation Using Java Applets

54 Version 7.1

Sample # 1—Data Field Validation Using Java and JavaScripts
This sample program illustrates the use of the Java applets and client JavaScripts to validate
data. The sample consists of an HTML form and some JavaScript code that provides the
communication between the user and the Java applets. The information used to validate the
input data is predefined in the HTML form. If the user selected Sample #1: Validation
using Java/JavaScripts from the Sample Programs Menu, Figure 11, the following panel is
displayed:

Figure 11. Sample Programs Menu

Data Validation Using Java Applets

55World Wide Web Interface Guide

10.
U

sin
g

Java
an

d
JavaS

crip
t

Sample # 2—Data Validation: Dynamically Generated HTML Forms
In Sample # 2, the validation information is not specified in the HTML form. Instead, the
HTML form is dynamically generated by the Sample #2. Information needed to build the
form and to validate input data is obtained from data view records and data attribute records.

Sample # 3—Data Validation: Static HTML Forms
In Sample # 3, while the validation information is still built dynamically from the data
model records, the HTML form is not. The HTML form is static, which allows the user to
use any HTML form so long as the information used for validation is located in the data
model records.

Java Applet Prerequisites
The prerequisites for using the Java field validation methodology are:
¶ REXX Web connector for MVS or REXX Web connector for OS/390.
¶ A client Web browser that supports both Java Version 1.1.8 or higher and JavaScript

calling applets compiled with Version 1.1.8 or higher.

Figure 12. Using Data Field Validation to Create a Problem Record

Data Validation Using Java Applets

56 Version 7.1

|
|

¶ A Web server that is capable of serving Java applets.
¶ The supplied Java applets stored on a Web server (see Step 2 below).

Installation and Configuration of the Sample Programs
The following procedure is used to install the necessary files:

1. Install either the REXX Web connector for MVS or the REXX Web connector for
OS/390.

2. Copy these files from the \web\java_aps directory on the provided CD-ROM to a Web
server where Java applets can be accessed:

¶ Blmwjast.class

¶ Blmwjafv.class

3. Ensure that these files reside in the data set where the HTML files reside on your REXX
Web connector for MVS server or your REXX Web connector for OS/390 server:

¶ BLMWHCF1

¶ BLMWHCIN

¶ BLMWHJS1

¶ BLMWHNJS

¶ BLMWHSAM

¶ BLMWHUCF

¶ BLMWHCPR

4. Modify BLMWHJS1 to specify the correct URL of your Web server where the Java
applets reside. In the following example, note that CODEBASE= lines occur on two
separate lines. Change http://yourWebServer/java in each line so that it contains the URL
of your Web server.

<APPLET NAME="STApplet" CODE="Blmwjast.class"
CODEBASE="http://yourWebServer/java"
WIDTH=5 HEIGHT=5 >
</APPLET>
<APPLET NAME="ValidateApplet" CODE="Blmwjafv.class"
CODEBASE="http://yourWebServer/java"
WIDTH=5 HEIGHT=5 >
</APPLET>

5. Ensure that these files reside in the data set where your REXX files reside on your
REXX Web connector for MVS server or your REXX Web connector for OS/390:

¶ BLMWCRTV

¶ BLMWFCVD

¶ BLMWFCV1

¶ BLMWREVD

6. Modify both BLMWFCVD and BLMWFCV1 to specify the correct URL of your Web
server where the Java applets reside. In the following example, note that the
CODEBASE= lines occur in two locations. Change each line so that it contains the URL
of the Web server.

Java Applet Prerequisites

57World Wide Web Interface Guide

|

10.
U

sin
g

Java
an

d
JavaS

crip
t

queueit '<applet name=STApplet code=Blmwjast.class'
queueit 'codebase=http://yourWebServer/java/'
queueit 'width=5 height=5 >'
queueit '</applet>'
queueit '<applet name=Validate code=Blmwjafv.class'
queueit 'codebase=http://yourWebServer/java/'
queueit 'width=5 height=5 >'
queueit '</applet>'

7. A TSX BLMWSAMD is provided in the SBLMTSX data set. It will create a data view
record and some data attribute records for use by Sample #2 and Sample #3. (You may
want to refer to the Tivoli Information Management for z/OS Panel Modification Facility
Guide and the Tivoli Information Management for z/OS Application Program Interface
Guide for additional information about data view records, data model records, and data
attribute records.) The TSX BLMWSAMD will use the assisted entry panels for the
fields to “prime” the attribute records. All attribute records must contain an s-word
index. BLMWSAMD supplies an s-word index for those fields whose assisted entry
panels specify “Collect s-word from caller=YES”. The following records are created:

DVSAMPLE Data view record containing all of the sample attribute records

AAA#REQN Data attribute record for reporter name

AAA#RQDP Data attribute record for reporter department

AAA#PHON Data attribute record for reporter phone

AAA#STAT Data attribute record for problem status

AAA#PRII Data attribute record for priority

AAA#DSAB Data attribute record for brief description

AAA#DTXT Data attribute record for description text

In order to run BLMWSAMD, do the following:

a. Verify that your Tivoli Information Management for z/OS session allocates the dd
name SBLMTSX. SBLMTSX must allocate the partitioned data set which contains
BLMWSAMD.

b. BLMWSAMD assumes an immediate response chain (irc) of ;INITIALIZE,3,2 flows
to the Management application and from there a selection of 5 will start record create
and flow to BLG00000. If this is not true, copy the TSX to a local TSX data set
(which must be allocated to DD name BLGTSX when running Tivoli Information
Management for z/OS) and modify the immediate response chain and selection
number (look for the phrase CHANGE THE FOLLOWING: in BLMWSAMD).

c. From the Tivoli Information Management for z/OS command line, type ;RUN
BLMWSAMD to run the TSX.

d. Verify successful completion by displaying record DVSAMPLE, selecting option 3,
and verifying that the correct attribute record IDs are contained in the list.

8. Now you are ready to try out the sample programs. Start your REXX Web connector for
MVS server or your REXX Web connector for OS/390 server.

9. On your Web browser, specify the correct URL location of your REXX Web connector
for MVS server or your REXX Web connector for OS/390 server, for example,
http://mvssystem:80/infoweb/blmwhsam.html. From the resulting screen, select sample
1, which will provide you the opportunity to test the data validation. If you provide

Installation of the Sample Programs

58 Version 7.1

invalid data (for example, a tilde ˜ character in the reporter name field), an error message
will advise you that you entered an invalid character; but the error message is issued
from the client workstation where the data validation occurred rather than from the
server.

The Supplied Java Applets
Two Java applets which are used in the process of performing validation on the client rather
than on the server are provided on the CD-ROM. The Storage applet, Blmwjast.class, and
the Validation applet, Blmwjafv.class, work together to perform validation. Data validation
relies on field keys and Tivoli Information Management for z/OS validation patterns.
Figure 13 illustrates how the Storage applet works with the Validation applet to provide data
validation on the client.

The Storage applet takes as input the s-word index and validation pattern and maintains a
table of all the s-word indexes and their corresponding validation patterns on the client
machine. Whenever there is data to be validated, the Validation applet gets the validation
pattern from the Storage applet, and validates the input data using that pattern. The
Validation applet sends the result back to the HTML form, where JavaScripts bind the
HTML form and the applet to present the result to the user. If the data is valid, there is no
further interaction between the form and the user. If the data is invalid, JavaScripts provide
the communication media between the HTML form and the user. The user will see a
JavaScript Alert Window with the applet-generated error message in it.

This is a description of the functions provided by each of the supplied applets:

The Storage applet: Blmwjast.class

Figure 13. Data validation using the supplied Java applets

Installation of the Sample Programs

59World Wide Web Interface Guide

10.
U

sin
g

Java
an

d
JavaS

crip
t

public void put(String key, String value)
This function puts the s-word indexes as the keys and the corresponding
validation patterns as the values into a storage table. If there is no pattern
involved with the s-word index, then specify “_NO PATTERN” as the
pattern string. The pattern must be preceded by the required reply field
indicator:

Y for a required field

_ for a non-required field or not sure that it is required

An example of this function call is

¶ put(“S0B59”,“YCCV14”)

which will put the s-word S0B59 with a corresponding pattern YCCV14 in
the storage table. Some other examples of this function call are

¶ put(“S8100”,“_ACR5,NCR5”)

¶ put(“S0BEE”,“Y{INITIAL},{OPEN},{CLOSED}”)

¶ put(“S0E0F”,“_NO PATTERN”)

public String get(String key)
This function returns the pattern string from the storage table based on an
s-word index. An example of this function call would be
X=get(“S0B59”)

which will assign the pattern YCCV14 to the variable X (assuming that the
put function of the previous step put(“S0B59”,“YCCV14”) has already been
done).

The Validation applet: Blmwjafv.class

public String validate(String pattern, String userData)
This function validates the user’s input data based on a provided validation
pattern. It will return the result as a string. If the user’s input data is valid,
true is returned; otherwise, an error message is returned. An example of this
function call would be
y=validate(X,“Doe/Jane”)

This assumes from the previous example call that the variable X contains the
pattern string YCCV14; the variable y would contain the return string as true.

Some other items of which you should be aware are:

¶ Literal patterns must be enclosed in braces {}

¶ A 1000-character limit exists for patterns

In addition to these Java applets, JavaScripts have been provided which bind the HTML
form and the Java applets, making the form interactive. JavaScripts provide a two-way
communication between Java and HTML. To invoke a Java function that is contained in a
Java class, the following JavaScript format is used:
document.yyyyy.zzzzz

The Supplied Java Applets

60 Version 7.1

where yyyyy is the name of the applet which was assigned in the HTML <applet> tag and
zzzzz is the function call. For example, if you named your Storage applet STApplet, this is
how to make a put of an s-word index and a validation pattern:
document.STApplet.put(‘S0B59’,‘YCCV14’)

or
document.STApplet.put(“S0B59”,“YCCV14”)

The Supplied Samples

Sample #1—Data Field Validation Using Java and JavaScripts
This sample mainly involves two HTML files, BLMWHJS1 and BLMWHCF1. In this
sample, the s-word indexes and patterns provided to the Storage applet are coded in the
HTML form, BLMWHCF1. The s-word index is coded as the NAME parameter of the
HTML form field and the pattern is coded as the default VALUE parameter of the HTML
form field. Because the patterns are coded as the default VALUEs, the patterns will
temporarily appear in the HTML form at the beginning of the HTML page download. (The
feature is designed this way because it is assumed that most users are more familiar with
HTML than with JavaScript.) Below is a section of code from the HTML form file,
BLMWHCF1, that illustrates where the s-word index and pattern are defined:
<TR>

<TD ALIGN=“right”> Name:
</TD>
<TD ALIGN=“left”> <input type=“text”

NAME=“S0B59”
VALUE=“YCCV14”
maxlength=50>
size=50

</TD>
</TR>

The HTML file, BLMWHJS1, contains the JavaScript code that take the values from the
HTML form file and gives them to the Storage applet. The JavaScripts communicate to the
Validation applet when the CREATE button is pressed by passing the correct patterns and
user’s input data to the Applet.

Sample #2—Data Field Validation: Dynamically Generated HTML
Forms

This program dynamically generates the HTML form for you based on data model records.
Data model records provide an alternative to assisted entry panels to store data composition
of your records; additional information on data model records can be found in the Tivoli
Information Management for z/OS Panel Modification Facility Guide and the Tivoli
Information Management for z/OS Application Program Interface Guide. Attribute records
must contain an s-word index. This program also provides the s-word indexes and patterns
for the Java applets. Two REXX programs, BLMWREVD and BLMWFCVD, and one
Terminal Simulator Exec are involved in this sample. The Terminal Simulator Exec
generates a data view record and six data attribute records in your Tivoli Information
Management for z/OS database which are used by this sample. BLMWREVD is the REXX
program that performs the API call to retrieve data view and data attribute records which
contain the s-word indexes and validation patterns. BLMWFCVD is the REXX program that

The Supplied Java Applets

61World Wide Web Interface Guide

10.
U

sin
g

Java
an

d
JavaS

crip
t

loads the Java applets and builds the HTML form and JavaScripts based on what
BLMWREVD obtained from your Tivoli Information Management for z/OS database.

The following steps describe the process represented in Figure 14:

1. A user specifies the correct URL to point their Java/JavaScript-enabled Web browser to
BLMWFCVD.

2. BLMWFCVD calls BLMWREVD.

3. BLMWREVD performs the Tivoli Information Management for z/OS API calls to
retrieve the data view record and the data attribute records contained within the data
view record.

4. BLMWREVD retrieves the s-word indexes and validation patterns from each of the
attribute records and stores them in global variable stems.

5. After BLMWREVD runs, BLMWFCVD takes the s-word indexes and patterns and
generates the HTML form and JavaScripts to communicate to the Java Applets.

6. Once the HTML form and JavaScripts are generated, the MVS server will present the
HTML form and load the Java applets.

7. It will also load any image files from a Web server onto the client’s browser.

Sample #3—Data Field Validation: Static HTML Forms
Sample # 3 uses a static HTML form instead of the dynamically generated HTML of Sample
#2. The validation information (s-word indexes and patterns from the data model records)
are still dynamically extracted from data model records. The static HTML form allows you
to pick from the set of data attribute records in your data view record which fields you want
to be shown in the HTML form. When writing the static HTML form, you must specify the
s-word indexes as the NAME parameter in the form field so that the JavaScripts know
which pattern to give to the validation applet. Sample # 3 uses two REXX programs,
BLMWREVD (which was also used in Sample # 2) which does the retrieval of s-word
indexes and patterns from the data model records, and BLMWFCV1, which uses an
“include” line for a static HTML form instead of generating the form. The static HTML
form used is BLMWHUCF, the predefined create form.

Java/JavaScript
Enabled
Internet
Browser

Data View Record

Information Management
for z/OS DatabaseMVS Web ServerWeb ServerClient Machine

Data Attribute Rec1
Data Attribute Rec2
Data Attribute Rec3

Data Attribute RecN

BLMWREVD.REXX

BLMWFCVD.REXX

Java classes

Java classes 2

1

6

7

5
3

4

Image Files

Image Files

Figure 14. Sample # 2 – Data Field Validation Using Dynamically Generated HTML Forms

The Supplied Samples

62 Version 7.1

Advanced Modification of Sample Programs
The sample programs provide an illustration of how the Java applets can be used to verify
user input. This section provides some additional detail so that you can tailor these programs
to meet your specific needs.

Sample # 1
Open BLMWHCF1 and modify the form fields to include your changes. For
example, if you want to add a required field in the form, you would need to include
the following line:

<input type=“text” name=SWORDINDEXOFFIELD value=“YVALIDATION_PATTERN”>

Change SWORDINDEXOFFIELD and YVALIDATION_PATTERN to the names of
your s-word index and your validation pattern.

Sample # 2
If you want to create an HTML form including all the data attribute records in a
specified data view record, you will need to create these attribute records and have
them in the data view record. Attribute records must contain an s-word index. For
example, if you have a data view record called DVMYSAMP that has several data
attribute records, you need to open BLMWREVD and BLMWCRTV; look for the
word DVSAMPLE and change it to the name of your data view record,
DVMYSAMP.

Sample # 3
Sample # 3 provides the flexibility to choose which fields you want to have on your
HTML form. Make certain that the data view record specified in BLMWREVD has
attribute records that define s-word indexes and validation patterns of the fields you
want to validate. Attribute records must contain an s-word index. Also make certain
that you use the correct data view record name in BLMWCRTV to do the create
process. Open the BLMWHUCF file and add or modify your input fields. For this
sample, you only need to specify the s-word indexes as the NAME parameter of the
form field.

The Supplied Samples

63World Wide Web Interface Guide

10.
U

sin
g

Java
an

d
JavaS

crip
t

The Supplied Samples

64 Version 7.1

REXX Web connector for OS/390 --
Overview

Overview of the REXX Web connector for OS/390
The REXX Web connector for OS/390 enables you to access a Tivoli Information
Management for z/OS database using a Web browser as a client. It is similar to the REXX
Web connector for MVS. However, the REXX Web connector for OS/390, unlike the REXX
Web connector for MVS, uses the IBM HTTP Server for OS/390. The OS/390 GWAPI
interface is used for processing Web browser transactions.

The REXX Web connector for OS/390 uses the IBM HTTP Server for OS/390. It also uses
the Tivoli Information Management for z/OS HLAPI/REXX interface. It relies on the IBM
HTTP Server for OS/390 GWAPI REXX to establish a REXX environment and to invoke
the REXX EXECs in the DGA.

The REXX Web connector for OS/390 is an IBM HTTP Server for OS/390. It is made up of
several different elements:

¶ The client browser

¶ IBM HTTP Server for OS/390

¶ The Tivoli Information Management for z/OS HLAPI/REXX interface

¶ The Database Gateway Application

IBM HTTP Server for OS/390
The IBM HTTP Server for OS/390 provides the interface between the client browser and the
Database Gateway Application. It also provides the GWAPI REXX functions. For additional
detail on GWAPI REXX, refer to the HTTP Server Planning, Installation, and Using V5.2
for OS/390.

Tivoli Information Management for z/OS HLAPI/REXX Interface
Any feature or function available through the HLAPI/REXX interface is available to the
Database Gateway Application (DGA). The Tivoli Information Management for z/OS
Application Program Interface Guide provides detailed information on the HLAPI/REXX
interface.

11

65World Wide Web Interface Guide

|

|
|
|

|

|

|

|
|

11.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

O
S

/390
--

O
verview

DGA Considerations
The Database Gateway Application contains program logic designed for using the Tivoli
Information Management for z/OS HLAPI/REXX Interface and for generating dynamic
HTML either from Tivoli Information Management for z/OS records or from search results
lists. The sample DGA, using the Tivoli Information Management for z/OS HLAPI/REXX
Interface, demonstrates the basic techniques needed to communicate with Tivoli Information
Management for z/OS, and also demonstrates a way of interacting with a Web client. The
DGA relies on the functions provided by GWAPI REXX. The DGA is described in greater
detail in “Modifying the Database Gateway Application” on page 47.

Processing a Request from a Client Browser
When a request from a client browser is sent, the following actions occur:

1. The HTTP Server invokes the GWAPI REXX DLL which establishes a REXX
environment.

2. The GWAPI REXX calls the Database Gateway Application to process the client browser
transaction.

¶ The HLAPI/REXX Interface is called for the requested Tivoli Information
Management for z/OS transaction.

¶ HTML statements, along with any requested Tivoli Information Management for
z/OS data, are built by calling GWAPI REXX service routines.

3. The Database Gateway Application returns to the HTTP Server.

4. At this point the client browser’s transaction is complete.

Debugging REXX EXECs
The log file is a combination of the directories specified by the http-errors log file. (Refer to
your IBM HTTP Server documentation to determine this file location.) This log file captures
all of the REXX environment standard output information (for example, TRACE and SAY
statements), including any REXX interpreter output. Once REXX EXECs have been
debugged, all logging should be turned off before trying to multitask.

Multitasking
When running the REXX Web connector for OS/390 with the REXX/HLAPI interface, the
REXX EXEC BLMWSMLT is provided to allow multitasking. Without it, only one browser
request at a time could process a HLAPI/REXX transaction. The DGA as provided is written
to work with the HLAPI REXX interface.

Prerequisites
To run the REXX Web connector for OS/390, you must have:

¶ A Web browser

DGA Considerations

66 Version 7.1

|

|

|
|

|

REXX Web connector for OS/390 --
Installation

In order for the IBM HTTP Server to run GWAPI REXX programs, the OS/390 GWAPI
REXX software must be installed. After GWAPI REXX is installed, you will need to:

¶ Create a new service directive in your IBM HTTP Server configuration file on OS/390
UNIX® System Services for the GWAPI REXX DLL, IMWX00. For example:
Service /INFOWEB/*.REXX /InfoMgt/GWAPI/bin/IMWX00.so:IMWX00/InfoMgt/GWAPI/bin/BLMWSWRT/*.REXX

Note: The IBM HTTP Server configuration file is specified in the –r parameter on the
ICSPARM parameter in your HTTP Server startup procedure. If the –r parameter
is not specified on ICSPARM or if ICSPARM is not specified, then the
configuration file defaults to /etc/httpd.conf. If you specify the –r parameter, but
specify a fully-qualified file name, then the path for the configuration file defaults
to the /etc directory.

¶ Add directives for accessing HTML files after the service directive added above. For
example:
Pass /INFOWEB/* /InfoMgt/GWAPI/html/*

¶ Modify the PATH statement for the IBM HTTP Server to specify where to find REXX
EXECs. The PATH statement is in the /etc/httpd.envvars file. This is an example of
what you might use:
PATH=/bin:.:/usr/lpp/internet/bin:/InfoMgt/GWAPI/bin

Note: The IBM HTTP Server configuration file is specified in the –r parameter on the
LEPARM parameter in your HTTP Server startup procedure. If the –r parameter
is not specified on LEPARM or if LEPARM is not specified, then the
configuration file defaults to /etc/httpd.envvars. If you specify the –r parameter,
but specify a fully-qualified file name, then the path for the configuration file
defaults to the /etc directory.

¶ You will also need to make sure that the following entries exist for MIME Types located
in your configuration file.

v Addtype .html text/html

v Addtype .html text/x-ssi-html

Alternately, you can also confirm that these entries exist for MIME Types under the
Configuration & Administration forms page of your IBM HTTP Server.

12

67World Wide Web Interface Guide

|

|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|

|

|

|

12.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

O
S

/390
--

In
stallatio

n

Installing the Database Gateway Application
The Database Gateway Application (DGA) consists of REXX EXECs and HTML files. The
REXX EXECs and HTML files need to be placed in HFS directories under OS/390 UNIX
System Services. The REXX EXECs needed for the DGA are the same ones used for the
REXX Web Connector for MVS. They have been written to run when used with either the
REXX Web Connector for MVS or the REXX Web Connector for OS/390. The REXX
EXECs and HTML files need to be copied from data sets to file directories under OS/390
UNIX System Services.

Note: You may need to substitute the data set names used at your installation for the
BLM.SBLMxxxx data set names given in the steps below.

1. Create a directory where the REXX GWAPI EXECs will reside:
/InfoMgt/GWAPI/bin

2. Create a directory where the HTML will reside:
/InfoMgt/GWAPI/html

3. Create an “external link” to the GWAPI REXX. From an OS/390 UNIX System
Services session, enter
ln –e IMWX00 /InfoMgt/GWAPI/bin/IMWX00.so

4. Go to your REXX GWAPI directory (created in Step 1) and copy all of the members
from data set BLM.SBLMREXX. A convenient way to do this is to use the ISPF
ISHELL utility. All REXX EXECs in your REXX GWAPI directory should be in upper
case.

5. Go to your HTML files directory (created in Step 2) and copy all of the members from
data set BLM.SBLMHTMV. Provide all of the members with an extension of .html;
the member file names should be uppercase, and the file extension .html should be
lowercase.

6. Copy BLMWHELG.html, BLMWHPLG.html, BLMWHCPR.html,
BLMWHCIN.html, and BLMWHUCF.html into the directory where IMWX00
resides.

7. Edit the BLMWSFIN file in your REXX directory and change the
APPLICATION_ID, SESSION_MEMBER, and PRIVILEGE_CLASS as needed.
The Tivoli Information Management for z/OS Application Program Interface Guide
contains additional information about control parameter data blocks (PDBs) used by the
HLAPI/REXX interface.

8. If starting your IBM HTTP Server as a catalogued procedure, add the Tivoli
Information Management for z/OS SBLMMOD1 data set and your session member load
library into your STEPLIB concatenation. If starting the IBM HTTP Server from an
OS/390 UNIX System Services session, be sure to include all of the above mentioned
data sets in its STEPLIB global variable.

9. If in the future you intend to develop a customized web connector application for your
user community, it is suggested that you make the following additional changes to your
IBM HTTP server procedure.

¶ If starting the IBM HTTP Server as a cataloged procedure, you must allocate a DD
statement BLGTSX that points to the data set that contains your REXX TSX
EXECs as well as the SBLMTSX data set that was shipped with Tivoli Information
Management for z/OS (this data set contains the TSXs used by immediate

Installing the DGA

68 Version 7.1

|
|

|
|

|
|

|

|

|
|
|

|
|
|
|

notification). You can also concatenate multiple data sets to the BLGTSX DD.
Create another data set for user modified or created TSXs, and add it to the
BLGTSX DD concatenation. Refer to the Tivoli Information Management for z/OS
Planning and Installation Guide and Reference for more information on starting
Tivoli Information Management for z/OS and allocating the BLGTSX data set
where your TSX REXX EXECs reside.

The DD statement you allocate should look like the following example:
//BLGTSX DD DISP=SHR,DSN=user.execs
// DD DISP=SHR,DSN=BLM.SBLMTSX

In order to receive REXX trace output from your TSXs, as well as any panels or error
messages that the TSX may encounter, you should also add the following SYSTSPRT
DD to your IBM HTTP Server procedure:
//SYSTSPRT DD SYSOUT=*

In order to debug TSPs and panel problems using the TRACE or FLOW commands or
the TSP PRINT command, you should add the following lines to your IBM HTTP
Server procedure:
//BLGTRACE DD SYSOUT=*
//BLGFLOW DD SYSOUT=*
//SYSPRINT DD SYSOUT=*

10. Start or restart your IBM HTTP Server. For debugging, start IBM HTTP Server with -v
or -vv.

11. Ensure that the Tivoli Information Management for z/OS BLX Service Provider
(BLX-SP) is active.

Verifying HTTP Server File Access
To query whether the connection with the IBM HTTP Server is successful, issue the
following command from a browser window:
http://hostname:portnumber/INFOWEB/BLMWQMAC.REXX

In the previous example, hostname is the host name of your MVS system, and portnumber
is the port number used to access the IBM HTTP Server for OS/390. If your connection is
successful, the following message will result from the command.

Starting the Sample Application
Once you have determined that the connection is successful, you can start the sample
application by issuing the following command from a browser window:
http://hostname:portnumber/INFOWEB/BLMWHDBM.html

Installing the DGA

69World Wide Web Interface Guide

|
|
|
|
|
|

|

|
|

|
|
|

|

|
|
|

|
|
|

|

|

|
|

|

|
|
|
|

|

|

|
|

|

12.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

O
S

/390
--

In
stallatio

n

where hostname is the host name of your MVS system and portnumber is the port number
used to access the IBM HTTP Server for OS/390. For more information on using the sample
application, see “Sample Database Gateway Application” on page 48.

Migration from REXX Web connector for MVS
If you are currently using REXX Web connector for MVS and would like to migrate to
REXX Web connector for OS/390, follow these steps:

1. Copy HTML files to an HFS directory under OS/390 UNIX System Services.

2. Copy REXX EXECs to an HFS directory under OS/390 UNIX System Services.

3. Use the supplied Database Gateway Application as a guide to making changes to your
application.

¶ To send output back to the browser you will need to change any of your QUEUE
statements in REXX to call the IMWXWRT service routine supplied by GWAPI
REXX.
text = 'Tivoli Information Management for z/OS Search Results List'
ADDRESS LINKMVS 'IMWXWRT text'

4. REXX EXECs should also be changed to handle multitasking. Look at the sample DGA
for an example of how this can be done. This is the basic flow of how multitasking is
implemented:

a. BLMWSWRT calls BLMWSMLT.

b. BLMWSMLT finds an available global variable pool and passes it back to
BLMWSWRT.

c. BLMWSWRT then passes the pool to the forms processing routines.

d. The forms processing routines use the global variable pool to obtain the
HLAPI/REXX environment variables.

e. The forms process routines return to BLMWSWRT, which again calls BLMWSMLT
to mark the global variable as available for use.

Note: You may find it easier to make changes to the OS/390 BLMWSWRT rather than
migrate the MVS router BLMWSWRT. The changes that you will need to make
involve adding callable form processing routines to the router’s SELECT statement.

Migration from Earlier Versions of the Web connector for OS/390
If you are migrating from an earlier version of the Web connector for OS/390, follow these
steps:

1. Change the return code from BLMWSWRT from 0 to 200.

2. Records are no longer written to the gwapirx.log file. Records are written to the file
specified in the Error_log directive in the httpd.conf file.

Installing the DGA

70 Version 7.1

|
|
|

REXX Web connector for OS/390 --
Security Considerations

Security is a powerful feature of the Tivoli Information Management for z/OS REXX Web
connector for OS/390, not only in the secure functions provided, but also in the ease of use
for enabling a secure environment.

The REXX Web connector for OS/390 “inherits” the security features of the HTTP Server
server. Configuring security in HTTP Server is usually enough to enable a secure
environment, because the REXX Web connector for OS/390 is just another GWAPI program
running under HTTP Server. The HTTP Server product is the only server that allows for
validating passwords against a Security Authorization Facility (SAF) operating system such
as RACF.

It is strongly suggested that you review the HTTP Server security consideration before
configuring your HTTP Server environment.

A simple security sample of how you can configure the Web connector follows. This
example does not exploit the Secure Sockets Layer (SSL) or Secure Hypertext Transport
Protocol (S-HTTP) of the HTTP Server Server.

Sample Security Configuration
Suppose that you want to secure the sample Database Gateway Application with a user
password, and further, that you wish to add additional security for the CREATE transaction.
You would like the following to occur:

1. When a user accesses the DGA home page BLMWHDBM (or any DGA page) for the
first time, they must enter a general user Userid and Password:

¶ Userid WEBUSER

¶ Password WEBPW

If these have the correct authentication, the user will be allowed to view the DGA’s
HTML files and submit SEARCH and RETRIEVE transactions.

2. When a user submits a CREATE transaction for the first time, they must enter a RACF
authorized Userid and Password. Assume this to be a logon userid/password.

You wish to catch CREATE transactions that are entered via the Web browser command
line:
http://hostname/INFOWEB/CREATE.REXX?S0B59=Doe/Jane...

When the CREATE HTML BLMWHCRT is submitted.

13

71World Wide Web Interface Guide

|
|

|

|
|

|

13.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

O
S

/390
--

S
ecu

rity

The following HTTP Server configuration will enable the above security requirements:

¶ Create this Protection directive for general users:
Protection WEB_USER {

ServerID InfowebUser
Authtype Basic
Passwd file /infoweb/users/infoweb.pwd
GetMask WEBUSER
}

¶ Create this Protection directive for users with CREATE authority:
Protection WEB_CRT {
ServerID InfowebCrt
Authtype Basic
Passwd file %%SAF%%
GetMask All@(x)
}

¶ Create an /INFOWEB/USERS directory. In this directory, create a password file
INFOWEB.PWD with these definitions:

WEBUSER WEBPW: General_user

You can create a password file with the HTADM command or with HTTP Server
configuration panels.

¶ Create the following Protect directives in this order:
Protect /INFOWEB/CREATE.REXX* WEB_CRT
Protect /INFOWEB/* WEB_USER

Restart the HTTP Server server and try out your new security setup by running the Database
Gateway Application from a Web browser.

Migration Notes for Security
The Tivoli Information Management for z/OS Web connector for MVS Security routine
BLMWSWSE is not carried over to the REXX Web connector for OS/390. Equivalent
security is handled by HTTP Server configuration directives. However, you can add
additional security routines into the Database Gateway Application.

Sample Security Configuration

72 Version 7.1

|

|

|

|

REXX Web connector for OS/2 -- Overview

Overview of the REXX Web connector for OS/2
The REXX Web connector for OS/2 enables you to access a Tivoli Information Management
for z/OS database using a Web browser as a client. It is analogous to the REXX Web
connector for MVS. However, the REXX Web connector for OS/2 is a stand-alone OS/2
application which implements both the OS/2 IBM Internet Connection Server Version 4.1 for
OS/2 WARP® (ICS) and the Tivoli Information Management for z/OS REXX HLAPI/2
client feature.

The combination of ICSS and the Tivoli Information Management for z/OS REXX HLAPI/2
gives the REXX Web connector for OS/2 powerful advantages:

¶ The REXX Web connector for OS/2 supports both the TCP/IP and APPC/MVS
communication protocols to the MVS host. (The Tivoli Information Management for
z/OS REXX Web connector for MVS supports only the TCP/IP protocol.)

¶ Multitasking of Web browser client requests is intrinsic to the REXX Web connector for
OS/2. (The Tivoli Information Management for z/OS REXX Web connector for MVS
queues Web client requests to a single task.)

¶ The REXX Web connector for OS/2 provides Internet Connection Service (ICS)
Security. The REXX Web connector for OS/2 inherits security features from both the
Internet Connection Server and the Internet Connection Secure Server.

¶ The REXX Web connector for OS/2 provides distributed processing to different Tivoli
Information Management for z/OS MVS systems.

The REXX Web connector for OS/2 is an application that runs on an OS/2 machine. It is an
ICS ICAPI program that is called when a client Web browser directs a particular transaction
to the ICSS server installed on your OS/2 machine. The REXX Web connector for OS/2 has
two components:

¶ The Web connector Server

¶ The database gateway application

Both of these components are described in “REXX Web connector for OS/2 -- Functional
Interface” on page 77.

Processing a Request from a Client Browser
When a request from a client browser is sent, the following actions occur:

1. The ICSS server invokes the Web connector server as an ICAPI application

2. The Web connector server calls the database gateway application to process the client
browser transaction:

14

73World Wide Web Interface Guide

14.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

O
S

/2
--

O
verview

¶ The REXX HLAPI/2 interface is called for the requested Tivoli Information
Management for z/OS transaction. As with any REXX HLAPI/2 program, an MVS
server (MRES or RES) processes the Tivoli Information Management for z/OS
request and control is returned to the REXX HLAPI/2 interface.

¶ HTML statements, along with any requested Tivoli Information Management for
z/OS data, are built by calling Web connector service routines.

3. The database gateway application returns to the Web connector server, which in turn
returns to ICSS.

4. At this point, the client browser’s transaction is complete.

Prerequisites
To run the Tivoli Information Management for z/OS REXX Web connector for OS/2, you
must have:

¶ A Web browser

¶ OS/2 WARP Version 4

¶ Lotus® Domino™ for OS/2

¶ HLAPI/2

Installation
Install REXX Web connector for OS/2 by following these steps:

Note: You can only install Web connector on an HPFS drive.

1. Switch to, or start, an OS/2 window or an OS/2 full screen session.

2. If you already have Web connector installed, delete it by changing to the Web connector
installation directory and running EPFINSTS.

3. Insert the Web connector CD-ROM into a CD-ROM drive.

4. Type the following command at the OS/2 command prompt, then press Enter:
e:\web\os2\install

where:

e Is the drive letter of the CD-ROM drive that contains the Web connector
CD-ROM.

5. Read the information in the instructions window, then select Continue.

6. In the Install window, if you want the Installation and Maintenance Utility to update
your CONFIG.SYS file, select OK and go on to step 7. If you do not select OK,
changes are put in a file called CONFIG.ADD.

If you do not want the Installation and Maintenance Utility to update your CONFIG.SYS
file, do the following:

a. De-select Update CONFIG.SYS before you select OK.

b. Modify the CONFIG.SYS file manually before you shut down and restart your
workstation or start Web connector. Modify the CONFIG.SYS file using the
information in the CONFIG.ADD file. It is in the same directory as your

Overview of the REXX Web connector for OS/2

74 Version 7.1

|

|

|

|

CONFIG.SYS file. This file is not created until the Web connector Installation and
Maintenance Utility has completed its part of the installation.

7. In the Install - Directories window:

a. Select the component you want to install.

b. Type the target paths in which to install the Web connector files. You can accept the
default values or change them. If the paths do not exist, they will be created. The
default directory is C:\INFOWEB.

Note: You can select Disk space to determine the amount of available space on the
fixed disk drives in your workstation.

c. Select Install

The Web connector files are transferred from the installation CD-ROM to your
workstation. The Install - Progress window indicates progress.

8. When the transfer is complete, a message appears to indicate that Web connector is
installed. Select OK.

Note: If you update the CONFIG.SYS file during the installation, you must shut down your
workstation and start it again before starting Web connector.

The Web connector installation is complete. After you start your workstation again, verify
the installation.

Installation

75World Wide Web Interface Guide

14.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

O
S

/2
--

O
verview

Installation

76 Version 7.1

REXX Web connector for OS/2 --
Functional Interface

BLMWWEBS, the Web connector server, is the ICAPI program that ICSS calls to process
Tivoli Information Management for z/OS-type transactions and related services.

BLMWWEBS is an object code DLL that contains the server functions CALLWEB,
ENDWEB, and INITWEB.

Initweb
The INITWEB function runs when ICSS is started during its initialization phase. The
INITWEB function erases any residual global variables file (USER.INI) produced from an
earlier ICSS Web connector. It can be enhanced to do other initialization functions such as
setting global session variable. The ICSS process step associated with this function is
Service.

ICSS knows to call BLMWWEBS if you configured it with this ICAPI Serverinit directive:
e:/infoweb/bin/blmwwebs:Initweb

Initweb calls the REXX Database Gateway Application initialization routine. Initweb
processing:

¶ Sets up service environment (such as logging for the REXX routines) for the REXX
initialization routine

¶ Calls the Database Gateway Application initialization routine BLMWSINI

¶ Returns to ICSS

Callweb
The CALLWEB function sets up the Web connector environment and calls the Database
Gateway Application. The ICSS process step associated with this function is Service.

When an HTML form is submitted that matches the directive for an Infoweb CALLWEB
function, ICSS gives control to the ICAPI BLMWWEBS service CALLWEB. ICSS knows
to call BLMWWEBS if you configured it with this ICAPI:

/callweb* e:\infoweb\bin\blmwwebs:Callweb

Callweb is the interface between ICSS and the Database Gateway Application routines.
Callweb processing:

¶ Sets up service environment (such as logging for the REXX routines) in the Database
Gateway Application.

15

77World Wide Web Interface Guide

15.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

O
S

/2
--

In
terface

¶ Calls the Database Gateway Application router BLMWSWRT.

¶ Returns to ICS.

Endweb
The Endweb function runs when ICSS terminates. The Endweb function cleans up Database
Gateway Application resources. The ICSS process step associated with this function is
Server Termination.

ICSS knows to call BLMWWEBS if you configured it with this ICAPI Serverterm directive:
e:\infoweb\bin\blmwwebs:Endweb

Endweb calls the REXX Database Gateway Application termination routine. Endweb
processing:

¶ Sets up the logging environment file BLMWWEBS.END in the INFOWEB\BIN
directory. SAY and TRACE output from BLMWSTRM are logged to this file.

¶ Calls the Database Gateway Application termination routine BLMWSTRM.

¶ Returns to ICS.

Callable Service Routines
These service routines are callable from the Database Gateway Application REXX programs.
They provide bindings to some of the predefined ICSS functions that your REXX programs
cannot normally access. The syntax and description are as follows:

QUEUEIT string
Write the requested string to the body of the response. An HTTPD_write function is
performed.

SET_HTTPD variable_name value
Sets a variable (HTTP_RESPONSE, for example) with a value. An HTTPD_set
function is performed.

GET_HTTPD variable_name
The value of variable_name (QUERY_STRING, for example) is returned in the
REXX variable result. An HTTPD_extract function is performed.

Callweb

78 Version 7.1

REXX Web connector for OS/2 -- Security
Considerations

Security Considerations
Security is a powerful feature of the Tivoli Information Management for z/OS REXX Web
connector for OS/2, not only in the secure functions provided, but also in the ease of use for
enabling a secure environment.

The REXX Web connector for OS/2 “inherits” the security features of both the Internet
Connection Server and the Internet Connection Secure Server. Configuring security in ICSS
is usually enough to enable a secure environment, because the REXX Web connector for
OS/2 is just another ICAPI program running under ICSS.

It is strongly suggested that you review the ICSS security sections in the IBM Internet
Connection Server Webmaster’s Guide for OS/2 WARP before configuring your ICSS
environment.

A simple security sample of how you can configure the Web connector follows. Note that
this sample configuration will run for both the Internet Connection Server and Internet
Connection Secure Server. However, it does not exploit the Secure Sockets Layer (SSL) or
Secure Hypertext Transport Protocol (S-HTTP) of the Internet Connection Secure Server.

Sample Security Configuration
Suppose that you want to secure the sample Database Gateway Application with a user
password, and further, that you wish to add additional security for the CREATE transaction.
You would like the following to occur:

1. When a user accesses the DGA home page BLMWHDBM (or any DGA page) for the
first time, they must enter a general user Userid and Password:

¶ Userid WEBUSER

¶ Password WEBPW

If these have the correct authentication, the user will be allowed to view the DGA’s
HTML files and submit SEARCH and RETRIEVE transactions.

2. When a user submits a CREATE transaction for the first time, they must enter a RACF
authorized Userid and Password. These must be one of the REXX HLAPI/2 session
Security_ID and Passwords pairs:

¶ Userid SAMPID Password PASSWORD

¶ Userid SAMPID2 Password PASSWRD2

16

79World Wide Web Interface Guide

16.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

O
S

/2
--

S
ecu

rity

You also wish to catch CREATE transactions that are entered via the Web browser
command line:
http://hostname/callweb/CREATE.REXX?S0B59=Doe/Jane...

In this case, the create HTML BLMWHCRT would be bypassed.

The following ICSS configuration will enable the above security requirements:

¶ Create this Protection directive for general users:
Protection WEB_USER {

ServerID InfowebUser
Authtype Basic
Passwd E:\infoweb\users\infoweb.pwd
GetMask WEBUSER,SAMPID,SAMPID2
}

¶ Create this Protection directive for users with CREATE authority:
Protection WEB_CRT {
ServerID InfowebCrt
Authtype Basic
Passwd E:\infoweb\users\infoweb.pwd
GetMask SAMPID,SAMPID2
}

¶ Create an E:\INFOWEB\USERS directory. In this directory, create a password file
INFOWEB.PWD with these definitions:

WEBUSER WEBPW: General_user
SAMPID PASSWORD: Priv_user
SAMPID2 PASSWRD2: Priv_user

You can create a password file with the HTADM command or with ICSS configuration
panels.

¶ Create the following Protect directives:
Protect /infoweb/* WEB_USER
Protect /callweb/CREATE.REXX* WEB_CRT

Restart the ICSS server and try out your new security setup by running the Database
Gateway Application from a Web browser.

Migration Notes for Security
The Tivoli Information Management for z/OS Web connector for MVS Security routine
BLMWSWSE is not carried over to the REXX Web connector for OS/2. Equivalent security
is handled by ICSS configuration directives. However, you can add additional security
routines into the Database Gateway Application.

Security Considerations

80 Version 7.1

REXX Web connector for OS/2 -- Database
Gateway Application

The Database Gateway Application (DGA)
The Database Gateway Application (DGA) consists of REXX programs that provide gateway
connectivity between HTML forms on a Web browser and Tivoli Information Management
for z/OS through the REXX HLAPI/2 client. The entire Database Gateway Application can
be modified or enhanced to fit your needs.

DGA Service Routines

DGA Router - BLMWSWRT
The routine BLMWSWRT is called when an HTML form is sent from a remote browser and
is received by the Web connector server routine Callweb. BLMWSWRT routes the request to
a Forms Processing Routine. While the routine name (BLMWSWRT) and called interface
must always remain intact, you can modify the remainder of the processing routine names.

BLMWSWRT Interface
No parameters are passed to BLMWSWRT.

BLMWSWRT Operation
The URL passed is mapped to an actual forms processing routine and that routine is
called by the router. The forms processing routine should return any error condition
by returning data through the following REXX statement:

RETURN code message

Where

code A valid HTTP return code.

message A message string or null.

DGA Initialization — BLMWSINI
This routine is called during ICSS server initialization. Upon initialization, the Web
connector server routine Initweb calls BLMWSINI to erase any residual global variable file
named USER.INI. No parameters are passed to BLMWSINI. The return statement is always
of the form:

RETURN 0

17

81World Wide Web Interface Guide

17.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

O
S

/2
--

D
G

A

DGA Termination - BLMWSTRM
This routine is called during ICSS server termination. Upon termination, the Web connector
server routine Endweb calls BLMWSTRM to shut down active REXX HLAPI/2 sessions
and clean up global pool variables. No parameters are passed to BLMWSTRM. The return
statement is always of the form:

RETURN 0

DGA Global Variable Pool Service - BLMWSMLT
This routine provides the following services:

¶ Get a global variable pool and return its name to the caller.

¶ Free a requested global variable pool.

BLMWSMLT Interface
An example of using a GET request with BLMWSMLT is:

CALL BLMWSMLT 'GET'

For a GET request, the return statement is always of the form:
RETURN 0 name

or
RETURN 0 error_message

An example of using a FREE request with BLMWSMLT is:
CALL BLMWSMLT 'FREE' poolele

where poolele is the name of a global variable pool name to free.

For a FREE request the return statement is always of the form:
RETURN 0

DGA Forms Processing Routines
The Database Gateway Application provides the following sample forms processing routines
to illustrate how an application can be constructed:

BLMWFCRT Create record routine

BLMWFRVW View record routine

BLMWFSCH Search record routine

The forms processing routines are essentially the same as the sample Tivoli Information
Management for z/OS Web connector for MVS routines. For an explanation of these
routines, refer to “Sample DGA REXX Forms Service Routines” on page 46.

The differences between the OS/2 and MVS forms processing routines are explained in
“Migrating Forms Processing Routines” on page 84.

DGA Forms Service Routines

DGA Forms Initialization Service - BLMWSFIN
The Database Gateway Application provides BLMWSFIN to initialize REXX HLAPI/2
sessions and create REXX global variables for the session. BLMWSFIN is essentially the

DGA Service Routines

82 Version 7.1

same as the sample REXX Web connector for MVS routine. Differences between the OS/2
and MVS BLMWSFIN routines are explained in “Migrating the BLMWSFIN Routine” on
page 84.

General Migration Notes for MVS Database Gateway Application to
OS/2

The following changes apply to all DGA REXX routines in the Tivoli Information
Management for z/OS Web connector for MVS.

¶ MVS RGV (REXX Global Variable) Service calls are replaced by OS/2 SYSINI
services. Refer to “Migration Notes for Global Variables” on page 88 for additional
information.

¶ Change QUEUE statements to QUEUEIT calls. The REXX Web connector for MVS
uses the REXX QUEUE statement to send HTML output to the Web server. In the
REXX Web connector for OS/2, a callable Web server routine, QUEUEIT is provided,
which sends data to the client browser.

¶ RXFUNCADD statements must be added for each external C service call. In this
example, from the router BLMWSWRT, QUEUEIT is invoked:

Call RxFuncAdd 'QUEUEIT',blmwwebs,'QUEUEIT'

This command has the effect of “registering” the command. Any subsequent invocations
of the QUEUEIT command do not need to be preceded by the RXFUNCADD statement.

¶ OS/2 uses ASCII translations, MVS uses EBCDIC translations. For example, you must
use the EBCDIC equivalent of the carriage return line feed (crlf) command if you are
using the Web connector for MVS, or the ASCII equivalent of the carriage return line
feed crlf command if you are using the REXX Web connector for OS/2. The MVS crlf
variable definition is :

crlf = x2c('0D25'); /* EBCDIC equivalent of ASCII CRLF */

The OS/2 crlf variable definition is:
crlf = x2c('0D0A'); /* ASCII CRLF */

¶ REXX HLAPI/2 calls replace MVS HLAPI REXX invocations. The OS/2 DGA
termination routine BLMWSTRM replaces the MVS forms termination routine
BLMWSFTE.

¶ Deletion of Web connector for MVS Server Routines. These routines, used in the Web
connector for MVS Server, are no longer needed in the REXX Web connector for OS/2:
v BLMWSWGM
v BLMWSWAS
v BLMWSWPA
v BLMWSWSE
v BLMWSW64

Specific Migration Notes for MVS Database Gateway Application to
OS/2

You will need to consider the following factors when migrating from the MVS Database
Gateway Application to the OS/2 Database Gateway Application.

DGA Forms Service Routines

83World Wide Web Interface Guide

17.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

O
S

/2
--

D
G

A

¶ The OS/2 BLMWSWRT routine retrieves its own environment variables. No arguments
are passed to BLMWSWRT. The Web server routine GET_HTTPD is invoked to retrieve
environment variables. (In the Web connector for MVS server, arguments were passed.)

¶ The OS/2 BLMWSWRT routine sets HTTP header fields. For the REXX Web connector
for OS/2, the BLMWSWRT routine calls the Web server routine SET_HTTPD to set
fields such as HTTP_RESPONSE in the HTTP header. (In the Web connector for MVS
server, BLMWWEBS provided this function.)

¶ A global variable pool name is obtained and passed to a called form processing routine.
The DGA service BLMWSMLT is called to obtain and release this global variable pool
name.

¶ The OS/2 BLMWSWRT routine post parses the URL “body”. Special characters such as
+ are translated to blanks and the & delimiters are replaced by X'FF'. (In the Web
connector for MVS server, BLMWWEBS and services function BLMWSWPA provided
this function.)

¶ The forms processing routine name member is obtained with this parse statement:
Parse upper var pi 'CALLWEB/'member'.'

¶ The OS/2 BLMWSWRT routine builds error responses sent to the client browser. (In the
Web connector for MVS server, BLMWWEBS provided this function.)

Migrating the BLMWSFIN Routine
¶ You must add an RxfuncAdd call to register the REXX HLAPI/2 interface.

¶ The OS/2 BLMWSFIN routine can start multiple sessions to enable multiprocessing of
transactions.

Migrating Forms Processing Routines
¶ The OS/2 forms processing routine input interface has changed:

/* One parameter passed */
parse arg global

Note that you can also add other parameters, such as the query_string body, as long as the
call is changed from the router BLMWSWRT also.

Communication Protocols
The Tivoli Information Management for z/OS REXX Web connector for OS/2 supports two
communication protocols between OS/2 and the connected MVS system where the Tivoli
Information Management for z/OS database resides. These protocols are:

¶ TCP/IP

¶ APPC

The choice of protocol is controlled in the HLAPI/2 database profile. The name of the
HLAPI/2 database profile used by the Tivoli Information Management for z/OS OS/2 Web
connector is defined in the Database Gateway Application routine BLMWSFIN in field
DATABASE_PROFILE. (If APPC is used, you do not need to have TCP/IP on MVS.)

Migration Notes for Communication Protocol
The Tivoli Information Management for z/OS Web connector for MVS supports only the
TCP/IP communication protocol.

General Migration Notes

84 Version 7.1

Multithreaded Transactions
The REXX Web connector for OS/2 allows for concurrent processing of multiple Web
browser transactions. This asynchronous processing is feasible because ICSS supports
multiple ICAPI programs running simultaneously in its process. Because the REXX Web
connector for OS/2 is an ICAPI program, much of the multithreading work is done without
the Web connector needing to do anything.

However, this does not cover concurrent REXX HLAPI/2 sessions. If the same security_id
and password are used in separate sessions, and the Web connector is concurrently
processing transactions for these sessions, the HLAPI/2 client will reuse the same
conversation with the MVS MRES. Ultimately, the HLAPI/2 client will queue the
transactions at the conversation level. This is true for both the APPC and TCP/IP
communication protocols.

To solve this queueing problem and enable true multithreading, unique security_id and
password pairs are dedicated for each session. This is done in the DGA REXX forms
Initialization Service BLMWSFIN. The extract below allows for two true concurrent
sessions. Additional concurrent sessions will queue on the first session.
Select;

When global = 'free.1' then
do;

security_id = 'SAMPID';
password = 'PASSWORD';

end;
When global = 'free.2' then
do;

security_id = 'SAMPID2';
password = 'PASSWRD2';

end;
Otherwise
do;

security_id = 'SAMPID';
password = 'PASSWORD';

end;
End;

You can increase the number of concurrent sessions by adding additional security_id and
password pairs to the above Select statement.

Migration Notes for Multithreaded Transactions
The REXX Web connector for MVS does not support multithreading of browser
transactions. Simultaneous transactions are queued, which degrades the response time at the
requesting client browser.

Multithreaded Transactions

85World Wide Web Interface Guide

17.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

O
S

/2
--

D
G

A

Multithreaded Transactions

86 Version 7.1

REXX Web connector for OS/2 -- Global
Variables

Global Variables
Global variables are used by the Database Gateway Application in two different ways:

¶ To store REXX variables that are used between Web browser transactions. This is
known as state data. Its most common use is to store the REXX HLAPI/2 environment
variable BLG_ENVP for the entire ICS session. This method is used extensively in the
Database Gateway Application shipped with the REXX Web connector for OS/2.

¶ To store REXX variables for only the duration of the Web browser transaction. This is a
convenient way of storing and retrieving variables between REXX routines without
passing the variables as parameters.

The Tivoli Information Management for z/OS REXX Web connector for OS/2 uses the
service SYSINI to control global variables. SYSINI is part of the OS/2 RexxUtil package.

SysIni Usage
The following examples show how the DGA uses SYSINI. To store the variable
BLG_ENVP, use the syntax:

userf = '\infoweb\bin\user.ini'
result = SysIni(userf,global,'BLG_ENVP',BLG_ENVP)

Storing REXX variables is used in the forms Initialization routine BLMWSFIN.

To retrieve the variable BLG_ENVP, use the syntax:
result = SysIni(userf,global,BLG_ENVP)
BLG_ENVP = result

Retrieving REXX variables is used throughout the forms processing routines.

To retrieve all the names of all the global variable pools and have them stored in the stem
variable MULT use the syntax:

userf = '\infoweb\bin\user.ini'
result = SysIni(userf,mults,'ALL:','mult')

Retrieving global variable pool names is used in the Global Variable Pool Service
BLMWSMLT.

To delete all the global pool variable names, use the syntax:
userf = '\infoweb\bin\user.ini'
result = SysIni(userf,mults,'DELETE:')

18

87World Wide Web Interface Guide

18.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

O
S

/2
--

G
lo

b
als

Deletion of the global variable pool names is done in the Termination routine BLMWSTRM.

Migration Notes for Global Variables
¶ Change all MVS RGV (REXX Global Variable) Service calls to OS/2 SysIni services.

The following examples show use of MVS RGV calls and the replacement OS/2 SysIni
invocations.

v MVS GET global variable sample called by forms processing routines
result = blmxvgt('GLOBAL','JOBSTEP','blg*')
parse var result result result_text
if result > 8 then return '400' 'Global variable error.' result_text;
if result = 8 then do;

call BLMWSFIN; /* API not initialized */
parse var result result result_text
if result > 0 then return '502' 'Initialization error ' result_text;
result = blmxvgt('GLOBAL','JOBSTEP','blg*')
parse var result result result_text
if result > 0 then return '502' 'Initialization error ' result_text;
end;

v OS/2 GET global variable sample called by forms processing routines
sys_result = SysIni(userf,global,BLG_ENVP)

/* Check for BLG_ENVP being initialized */
If sys_result = 'ERROR:' then do;

call BLMWSFIN global; /* API not initialized */

parse var result result result_text
if result > 0 then
do
return '502 Initialization error ' result_text;
end
result = SysIni(userf,global,BLG_ENVP)
parse var result sys_result .
if sys_result = 'ERROR:' then
do
return '502 Initialization error: Global variable BLG_ENV'
end
end;

BLG_ENVP = sys_result;

v MVS PUT global variable sample called by initialization service BLMWSFIN.
result = blmxvpt('GLOBAL','JOBSTEP','blg*')
parse var result result result_text
if result > 4 then return '500' 'Global variables error.' result_text;

v OS/2 PUT global variable sample called by initialization service BLMWSFIN.
result = SysIni(userf,global,'BLG_ENVP',BLG_ENVP)
parse var result result result_text
if result = 'ERROR:' then

return '502 Initialization error: Global variable BLG_ENVP

¶ Other Global Variable Changes and Differences

v The OS/2 global variable pool name is now a variable passed as an argument from
the router BLMWSWRT. (In the MVS DGA it was hardcoded as GLOBAL.)

– MVS DGA
result = blmxvgt('GLOBAL','JOBSTEP','blg*')

– OS/2 DGA

Global Variables

88 Version 7.1

parse arg body , global;
.
.

result = SysIni(userf,global,BLG_ENVP)

v The OS/2 SYSINI sample does not initialize or terminate environments as in the
MVS implementation. In the MVS implementation, you may have calls such as
these:

/** Initialize RGV **/
result = BLMXSMK('GLOBAL','JOBSTEP')

/** Drop the existing global variables */
result = blmxvdr('GLOBAL','JOBSTEP','blg*')

There are no equivalent OS/2 SYSINI calls to these MVS RGV code statements.

Global Variables

89World Wide Web Interface Guide

18.
R

E
X

X
W

eb
co

n
n

ecto
r

fo
r

O
S

/2
--

G
lo

b
als

Global Variables

90 Version 7.1

REXX Web Connector for OS/2 -- Logging

The Tivoli Information Management for z/OS REXX Web connector for OS/2 logs
STDOUT and STDERR information to the ICSS error log, which by the default setting is
displayed at the ICSS console. The Database Gateway Application contains two logging
methods:

¶ Using REXX SAY statements:
/* Add a say statement in routine BLMWSWRT */

say 'In the router routine BLMWSWRT'

¶ Using REXX TRACE statements:

/* Add a trace on result statement in routine BLMWSWRT */

Trace 'R'

Restriction: Logging for simultaneous transactions (multithreaded) currently does not work.
This is being investigated.

Migration Notes for Logging
The REXX Web connector for MVS has a set of log codes issued by its server
BLMWWEBS. These notes were not migrated to the REXX Web connector for OS/2,
because most of the processing which issued log codes in the REXX Web connector for
MVS is now handled in the ICSS layer on OS/2.

19

91World Wide Web Interface Guide

19.
R

E
X

X
W

eb
C

o
n

n
ecto

r
fo

r
O

S
/2

--
L

o
g

g
in

g

Migration Notes for Logging

92 Version 7.1

Relating Publications to Specific Tasks

Your data processing organization can have many different users performing many different
tasks. The books in the Tivoli Information Management for z/OS library contain
task-oriented scenarios to teach users how to perform the duties specific to their jobs.

The following table describes the typical tasks in a data processing organization and
identifies the Tivoli Information Management for z/OS publication that supports those tasks.
See “The Tivoli Information Management for z/OS Library” on page 99 for more
information about each book.

Typical Tasks

Table 1. Relating Publications to Specific Tasks
If You Are: And You Do This: Read This:

Planning to Use Tivoli
Information Management for
z/OS

Identify the hardware and software
requirements of Tivoli Information
Management for z/OS. Identify the
prerequisite and corequisite products.
Plan and implement a test system.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Installing Tivoli Information
Management for z/OS

Install Tivoli Information Management
for z/OS. Define and initialize data
sets. Create session-parameters
members.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Tivoli Information
Management for z/OS
Integration Facility Guide

Define and create multiple Tivoli
Information Management for z/OS
BLX-SPs.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Define and create APPC transaction
programs for clients.

Tivoli Information
Management for z/OS Client
Installation and User’s Guide

Define coupling facility structures for
sysplex data sharing.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Diagnosing problems Diagnose problems encountered while
using Tivoli Information Management
for z/OS

Tivoli Information
Management for z/OS
Diagnosis Guide

A

93World Wide Web Interface Guide

|
|

A
.

R
elatin

g
P

u
b

licatio
n

s
to

S
p

ecific
Tasks

Table 1. Relating Publications to Specific Tasks (continued)
If You Are: And You Do This: Read This:

Administering Tivoli
Information Management for
z/OS

Manage user profiles and passwords.
Define and maintain privilege class
records. Define and maintain rules
records.

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Tivoli Information
Management for z/OS
Integration Facility Guide

Define and maintain USERS record.
Define and maintain ALIAS record.
Implement GUI interface. Define and
maintain command aliases and
authorizations.

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Implement and administer Notification
Management. Create user-defined line
commands. Define logical database
partitioning.

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Create or modify GUI workstation
applications that can interact with
Tivoli Information Management for
z/OS. Install the Tivoli Information
Management for z/OS Desktop on user
workstations.

Tivoli Information
Management for z/OS
Desktop User’s Guide

Maintaining Tivoli
Information Management for
z/OS

Set up access to the data sets. Maintain
the databases. Define and maintain
privilege class records.

Tivoli Information
Management for z/OS
Planning and Installation
Guide and Reference

Tivoli Information
Management for z/OS
Program Administration
Guide and Reference

Define and maintain the BLX-SP. Run
the utility programs.

Tivoli Information
Management for z/OS
Operation and Maintenance
Reference

Programming applications Use the application program interfaces. Tivoli Information
Management for z/OS
Application Program
Interface Guide

Use the application program interfaces
for Tivoli Information Management for
z/OS clients.

Tivoli Information
Management for z/OS Client
Installation and User’s Guide

Create Web applications using or
accessing Tivoli Information
Management for z/OS data.

Tivoli Information
Management for z/OS World
Wide Web Interface Guide

Typical Tasks

94 Version 7.1

Table 1. Relating Publications to Specific Tasks (continued)
If You Are: And You Do This: Read This:

Customizing Tivoli
Information Management for
z/OS

Design and implement a Change
Management system. Design and
implement a Configuration
Management system. Design and
implement a Problem Management
system.

Tivoli Information
Management for z/OS
Problem, Change, and
Configuration Management

Design, create, and test terminal
simulator panels or terminal simulator
EXECs. Customize panels and panel
flow.

Tivoli Information
Management for z/OS
Terminal Simulator Guide
and Reference

Tivoli Information
Management for z/OS Panel
Modification Facility Guide

Design, create, and test Tivoli
Information Management for z/OS
formatted reports.

Tivoli Information
Management for z/OS Data
Reporting User’s Guide

Create a bridge between NetView® and
Tivoli Information Management for
z/OS applications. Integrate Tivoli
Information Management for z/OS
with Tivoli distributed products.

Tivoli Information
Management for z/OS Guide
to Integrating with Tivoli
Applications

Assisting Users Create, search, update, and close
change, configuration, or problem
records. Browse or print Change,
Configuration, or Problem
Management reports.

Tivoli Information
Management for z/OS
Problem, Change, and
Configuration Management

Use the Tivoli Information
Management for z/OS Integration
Facility.

Tivoli Information
Management for z/OS
Integration Facility Guide

Using Tivoli Information
Management for z/OS

Learn about the Tivoli Information
Management for z/OS panel types,
record types, and commands. Change a
user profile.

Tivoli Information
Management for z/OS User’s
Guide

Learn about Problem, Change, and
Configuration Management records.

Tivoli Information
Management for z/OS
Problem, Change, and
Configuration Management

Receive and respond to Tivoli
Information Management for z/OS
messages.

Tivoli Information
Management for z/OS
Messages and Codes

Design and create reports. Tivoli Information
Management for z/OS Data
Reporting User’s Guide

Typical Tasks

95World Wide Web Interface Guide

A
.

R
elatin

g
P

u
b

licatio
n

s
to

S
p

ecific
Tasks

Typical Tasks

96 Version 7.1

Tivoli Information Management for z/OS
Courses

Education Offerings
Tivoli Information Management for z/OS classes are available in the United States and in
the United Kingdom. For information about classes outside the U.S. and U.K., contact your
local IBM representative or visit http://www.training.ibm.com on the World Wide Web.

United States
IBM Education classes can help your users and administrators learn how to get the most out
of Tivoli Information Management for z/OS. IBM Education classes are offered in many
locations in the United States and at your own company location.

For a current schedule of available classes or to enroll, call 1-800-IBM TEACh
(1-800-426-8322). On the World Wide Web, visit:

http://www.training.ibm.com

to see the latest course offerings.

United Kingdom
In Europe, the following public courses are held in IBM’s central London education centre
at the South Bank at regular intervals. On-site courses can also be arranged.

For course schedules and to enroll, call Enrollments Administration on 0345 581329, or send
an e-mail note to:

contact_educ_uk@vnet.ibm.com

On the World Wide Web, visit:

http://www.europe.ibm.com/education-uk

to see the latest course offerings.

B

97World Wide Web Interface Guide

B
.

E
d

u
catio

n
al

C
o

u
rses

98 Version 7.1

Where to Find More Information

The Tivoli Information Management for z/OS library is an integral part of Tivoli Information
Management for z/OS. The books are written with particular audiences in mind. Each book
covers specific tasks.

The Tivoli Information Management for z/OS Library
The publications shipped automatically with each Tivoli Information Management for z/OS
Version 7.1 licensed program are:
¶ Tivoli Information Management for z/OS Application Program Interface Guide
¶ Tivoli Information Management for z/OS Client Installation and User’s Guide *
¶ Tivoli Information Management for z/OS Data Reporting User’s Guide *
¶ Tivoli Information Management for z/OS Desktop User’s Guide
¶ Tivoli Information Management for z/OS Diagnosis Guide *
¶ Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications *
¶ Tivoli Information Management for z/OS Integration Facility Guide *
¶ Tivoli Information Management for z/OS Licensed Program Specification
¶ Tivoli Information Management for z/OS Master Index, Glossary, and Bibliography
¶ Tivoli Information Management for z/OS Messages and Codes
¶ Tivoli Information Management for z/OS Operation and Maintenance Reference
¶ Tivoli Information Management for z/OS Panel Modification Facility Guide
¶ Tivoli Information Management for z/OS Planning and Installation Guide and Reference
¶ Tivoli Information Management for z/OS Program Administration Guide and Reference
¶ Tivoli Information Management for z/OS Problem, Change, and Configuration

Management*
¶ Tivoli Information Management for z/OS Reference Summary
¶ Tivoli Information Management for z/OS Terminal Simulator Guide and Reference
¶ Tivoli Information Management for z/OS User’s Guide
¶ Tivoli Information Management for z/OS World Wide Web Interface Guide

Note: Publications marked with an asterisk (*) are shipped in softcopy format only.

Also included is the Product Kit, which includes the complete online library on CD-ROM.

To order a set of publications, specify order number SBOF-7028-00.

Additional copies of these items are available for a fee.

Publications can be requested from your Tivoli or IBM representative or the branch office
serving your location. Or, in the U.S., you can call the IBM Publications order line directly
by dialing 1-800-879-2755.

C

99World Wide Web Interface Guide

|

C
.

W
h

ere
to

F
in

d
M

o
re

In
fo

rm
atio

n

The following descriptions summarize all the books in the Tivoli Information Management
for z/OS library.

Tivoli Information Management for z/OS Application Program Interface Guide,
SC31-8737-00, explains how to use the low-level API, the high-level API, and the REXX
interface to the high-level API. This book is written for application and system programmers
who write applications that use these program interfaces.

Tivoli Information Management for z/OS Client Installation and User’s Guide,
SC31-8738-00, describes and illustrates the setup and use of Tivoli Information Management
for z/OS’s remote clients. This book shows you how to use Tivoli Information Management
for z/OS functions in the AIX®, CICS®, HP-UX, OS/2, Sun Solaris, Windows NT®, and
OS/390 UNIX System Services environments. Also included in this book is complete
information about using the Tivoli Information Management for z/OS servers.

Tivoli Information Management for z/OS Data Reporting User’s Guide, SC31-8739-00,
describes various methods available to produce reports using Tivoli Information Management
for z/OS data. It describes Tivoli Decision Support for Information Management (a
Discovery Guide for Tivoli Decision Support), the Open Database Connectivity (ODBC)
Driver for Tivoli Information Management for z/OS, and the Report Format Facility. A
description of how to use the Report Format Facility to modify the standard reports provided
with Tivoli Information Management for z/OS is provided. The book also illustrates the
syntax of report format tables (RFTs) used to define the output from the Tivoli Information
Management for z/OS REPORT and PRINT commands. It also includes several examples of
modified RFTs.

Tivoli Information Management for z/OS Desktop User’s Guide, SC31-8740-00, describes
how to install and use the sample application provided with the Tivoli Information
Management for z/OS Desktop. The Tivoli Information Management for z/OS Desktop is a
Java-based graphical user interface for Tivoli Information Management for z/OS. Information
on how to set up data model records to support the interface and instructions on using the
Desktop Toolkit to develop your own Desktop application are also provided.

Tivoli Information Management for z/OS Diagnosis Guide, GC31-8741-00, explains how to
identify a problem, analyze its symptoms, and resolve it. This book includes tools and
information that are helpful in solving problems you might encounter when you use Tivoli
Information Management for z/OS.

Tivoli Information Management for z/OS Guide to Integrating with Tivoli Applications,
SC31-8744-00, describes the steps to follow to make an automatic connection between
NetView and Tivoli Information Management for z/OS applications. It also explains how to
customize the application interface which serves as an application enabler for the NetView
Bridge and discusses the Tivoli Information Management for z/OS NetView AutoBridge.
Information on interfacing Tivoli Information Management for z/OS with other Tivoli
management software products or components is provided for Tivoli Enterprise Console,
Tivoli Global Enterprise Manager, Tivoli Inventory, Tivoli Problem Management, Tivoli
Software Distribution, and Problem Service.

Tivoli Information Management for z/OS Integration Facility Guide, SC31-8745-00,
explains the concepts and structure of the Integration Facility. The Integration Facility
provides a task-oriented interface to Tivoli Information Management for z/OS that makes the

The Tivoli Information Management for z/OS Library

100 Version 7.1

Tivoli Information Management for z/OS applications easier to use. This book also explains
how to use the panels and panel flows in your change and problem management system.

Tivoli Information Management for z/OS Master Index, Glossary, and Bibliography,
SC31-8747-00, combines the indexes from each hardcopy book in the Tivoli Information
Management for z/OS library for Version 7.1. Also included is a complete glossary and
bibliography for the product.

Tivoli Information Management for z/OS Messages and Codes, GC31-8748-00, contains
the messages and completion codes issued by the various Tivoli Information Management
for z/OS applications. Each entry includes an explanation of the message or code and
recommends actions for users and system programmers.

Tivoli Information Management for z/OS Operation and Maintenance Reference,
SC31-8749-00, describes and illustrates the BLX-SP commands for use by the operator. It
describes the utilities for defining and maintaining data sets required for using the Tivoli
Information Management for z/OS licensed program, Version 7.1.

Tivoli Information Management for z/OS Panel Modification Facility Guide,
SC31-8750-00, gives detailed instructions for creating and modifying Tivoli Information
Management for z/OS panels. It provides detailed checklists for the common panel
modification tasks, and it provides reference information useful to those who design and
modify panels.

Tivoli Information Management for z/OS Planning and Installation Guide and Reference,
GC31-8751-00, describes the tasks required for installing Tivoli Information Management for
z/OS. This book provides an overview of the functions and optional features of Tivoli
Information Management for z/OS to help you plan for installation. It also describes the
tasks necessary to install, migrate, tailor, and start Tivoli Information Management for z/OS.

Tivoli Information Management for z/OS Problem, Change, and Configuration
Management, SC31-8752-00, helps you learn how to use Problem, Change, and
Configuration Management through a series of training exercises. After you finish the
exercises in this book, you should be ready to use other books in the library that apply more
directly to the programs you use and the tasks you perform every day.

Tivoli Information Management for z/OS Program Administration Guide and Reference,
SC31-8753-00, provides detailed information about Tivoli Information Management for z/OS
program administration tasks, such as defining user profiles and privilege classes and
enabling the GUI user interface.

Tivoli Information Management for z/OS Reference Summary, SC31-8754-00, is a
reference booklet containing Tivoli Information Management for z/OS commands, a list of
p-words and s-words, summary information for PMF, and other information you need when
you use Tivoli Information Management for z/OS.

Tivoli Information Management for z/OS Terminal Simulator Guide and Reference,
SC31-8755-00, explains how to use terminal simulator panels (TSPs) and EXECs (TSXs)
that let you simulate an entire interactive session with a Tivoli Information Management for
z/OS program. This book gives instructions for designing, building, and testing TSPs and
TSXs, followed by information on the different ways you can use TSPs and TSXs.

The Tivoli Information Management for z/OS Library

101World Wide Web Interface Guide

C
.

W
h

ere
to

F
in

d
M

o
re

In
fo

rm
atio

n

Tivoli Information Management for z/OS User’s Guide, SC31-8756-00, provides a general
introduction to Tivoli Information Management for z/OS and databases. This book has a
series of step-by-step exercises to show beginning users how to copy, update, print, create,
and delete records, and how to search a database. It also contains Tivoli Information
Management for z/OS command syntax and descriptions and other reference information.

Tivoli Information Management for z/OS World Wide Web Interface Guide, SC31-8757-00,
explains how to install and operate the features available with Tivoli Information
Management for z/OS that enable you to access a Tivoli Information Management for z/OS
database using a Web browser as a client.

Other related publications include the following:

Tivoli Decision Support: Using the Information Management Guide is an online book (in
portable document format) that can be viewed with the Adobe Acrobat Reader. This book is
provided with Tivoli Decision Support for Information Management (5697-IMG), which is a
product that enables you to use Tivoli Information Management for z/OS data with Tivoli
Decision Support. This book describes the views and reports provided with the Information
Management Guide.

IBM Redbooks™ published by IBM’s International Technical Support Organization are also
available. For a list of redbooks related to Tivoli Information Management for z/OS and
access to online redbooks, visit Web site http://www.redbooks.ibm.com or
http://www.support.tivoli.com

The Tivoli Information Management for z/OS Library

102 Version 7.1

Index

A
ADSM Web client interface 52

B
BLMWFCRT, create record routine 44
BLMWFRVW, view record routine 44
BLMWFSCH, search record routine 44
BLMWJCL, sample JCL for the Web connector 7, 15
BLMWSFIN, sample forms service routine 46
BLMWSFTE, DGA REXX Forms Service Routine 46
BLMWSMLT, global variable pool services 66
BLMWSW64, security decoder service 17
BLMWSWAS, ASCII to EBCDIC conversion 47
BLMWSWPA, translation for URL-encoded data 47
BLMWSWRT, forms processing routine service router 43
BLMWSWSE, security routine 18
BLMWWEBS commands

CLOSE 21
DROP_CACHE 22
ECHO 22
EXECFLOW 21
NOEXECFLOW 21
NOTRACE 21
QUERY_CACHE 22
TRACE 21

BLMWWEBS parameters
AUTHORITY 12, 18
BACKLOG 11
CACHESIZE 12
CMDPREFIX 11
DEBUG 12
DOCUMENTROOT 13
EXECFLOW 11
HTML 11
LIFESPAN 12
MIMETYPETABLE 13
OWNER 11
PORT 10
PRAGMA 13
REALM 13
RECVTIMEOUT 11
SEGMENTSIZE 12
SENDTIMEOUT 12
TASKID 11
TCPIP 10
TIMEZONE 12
TRACE 11

BLMXSDR, destroy an RGV space 38
BLMXSMK, create an RGV space 38
BLMXVDR, drop a global variable 39
BLMXVGT, read a global variable 39

BLMXVPT, write a REXX variable 38

C
callable service routines 78
Callweb 77
client components overview 4
CLOSE, server command 21
commands, REXX Web connector for MVS

BLMWWEBS 21
server 21

communication protocols 84

D
Database Gateway Application

modifying 47
overview 6, 41
processing request from client browser 66
REXX forms processing routines

BLMWSWRT operation 44
BLMWSWRT parameters 43
how to invoke 43
overview 42

sample 48
sample routines

interface 45
operation 45

sample service routines
BLMWSFIN interface 46
BLMWSFTE interface 46
HTML documents 47
return codes 46
Web server service routines 47

DROP_CACHE server command 22
dynamic HTML 30
dynamic URLs

mapping to a FPR 30
overview 30

E
ECHO server command 22
Endweb 78
EXECFLOW server command 21

103World Wide Web Interface Guide

In
d

ex

F
forms processing routine service router – BLMWSWRT

operation 44
parameters 43

forms processing routines, DGA REXX
characteristics 42
invoking 43
sample routines

BLMWFCRT, create record routine 44
BLMWFRVW, view record routine 44
BLMWFSCH, search record routine 44
interface 45
operation 45

forms service routines, DGA REXX
BLMSFTE interface 46
BLMWSFIN interface 46
HTML documents 47
return codes 46
Web server 47

G
global variables

REXX Web connector for MVS and OS/390 UNIX System
Services

example using RGV services 39
functions 38
RGV service invocation 37

REXX Web connector for OS/2
migration notes 88
using SysIni 87

GWAPI REXX EXEC 65, 67

H
homepage, loading from a client browser 14
host components overview 4, 5
HTML documents

BLMWHADM, link to ADSM Web Client 47
BLMWHCRT, create HTML document 47
BLMWHDBM, menu HTML document 43, 47
BLMWHELG, epilogue HTML document 47
BLMWHPLG, prolog HTML document 47
BLMWHSAM, sample HTML for validation 47
BLMWHSCH, search HTML document 43, 47

HTTP messages 5

I
ICAPI REXX exec

overview 65
InfoWeb directive support 33
INFOWEB.SAMPLE.DATA 8

installing REXX Web connector
for MVS

BLMWWEBS parameter 10
loading for MVS home page 14
prerequisites 7
running as MVS batch job 7
running as MVS started task 15
testing from a client 15

for OS/2
migration notes for MVS DGA to OS/2 83
overview 73
prerequisites 74

for z/OS UNIX System Services
installing DGA 68
migrating from REXX Web connector for MVS 70
overview 67

Internet considerations for the Web connector 19

J
Java and JavaScript, using to validate data fields

data validation on the client using Java applets 53
data validation on the server 53
prerequisites 56
supplied Java applets 59
supplied programs 61

L
logging 23, 91

M
media types table 33
migrating

notes for global variables 88
notes for logging 91
notes for MVS DGA to OS/2 83
notes for security (OS/2) 80
notes for security (OS/390) 72
REXX Web connector for MVS to OS/390 UNIX System

Services 70
multithreaded transactions 85
MVS/ESA components overview 5
MVS Web server 5

N
NOEXECFLOW server command 21
NOTRACE server command 21

104 Version 7.1

P
partitioned data sets, allocating for use with REXX Web

connector for MVS 32
prerequisites for REXX Web connector

MVS 7
OS/2 74
OS/390 UNIX System Services 66

Q
QUERY_CACHE server command 22

R
RACF 17
REXX Global Variable (RGV) Service, MVS and OS/390

UNIX System Services 37
BLMXSDR, destroy an RGV space 38
BLMXSMK, create an RGV variable space 38
BLMXVDR, drop a global variable 39
BLMXVGT, read a global variable 39
BLMXVPT, write a REXX variable 38

REXX global variables, OS/2
migration notes 88
overview 87
using SysIni 87

REXX Interpret statement 20
REXX Web connector for MVS

commands
BLMWWEBS 21
server commands 21

installing and operating
BLMWWEBS parameters 10
loading for MVS home page from a client browser 14
prerequisites 7
running as MVS batch job 7
running as MVS started task 15
testing from a client 15

log codes 23
overview

client components 4
Database Gateway Application (DGA) 6
MVS/ESA 5
Tivoli Information Management for z/OS

considerations 5
Web server 5

REXX globals
RGV service invocation 37
using RGV services, example 39

security considerations
operating in an intranet 17
operating in the Internet 19
securing your Database Gateway Application 20

URL considerations
dynamic-URL mapping to FPR 30
dynamic URLs 30

REXX Web connector for MVS (continued)
URL considerations (continued)

include directive support 32
InfoWeb directive support 33
media types table 33
partitioned data sets 32
static-URL to data set mapping 31
static URLs 29

using Java and JavaScript to validate data fields
data validation on the client using Java applets 53
data validation on the server 53
prerequisites 56
supplied Java applets 59
supplied programs 61

REXX Web connector for OS/2
Database Gateway Application (DGA)

communication protocols 84
forms processing routines 82
forms service routines 82
migration notes from MVS DGA to OS/2 83
multithreaded transactions 85
service routines 81

functional interface
callable service routines 78
Callweb 77
Endweb 78

global variable 87
logging 91
overview 73
prerequisites 74
security considerations 79

REXX Web connector for OS/390
installing

installing DGA 68
migrating from REXX Web connector for MVS 70
overview 67

overview
Database Gateway Application (DGA) 66
ICSS server 65
prerequisites 66
Tivoli Information Management for z/OS REXX

HLAPI 65
security

migration notes 72
overview 71
sample configuration 71

S
sample DGA REXX forms processing routines

BLMWFCRT, create record routine 44
BLMWFRVW, view record routine 44
BLMWFSCH, search record routine 44

sample JCL for the Web connector 7, 15
security considerations

DGA considerations
access to Tivoli Information Management for z/OS

database 20
REXX Interpret statement 20

105World Wide Web Interface Guide

In
d

ex

security considerations (continued)
DGA considerations (continued)

TSO command invocation 20
for MVS, operating in an intranet

user authentication 18
for MVS, operating in the Internet 19
for OS/2

migration notes 80
sample configuration 79

for OS/390 UNIX System Services
migration notes 72
sample configuration 71

security service routines
BLMWSW64 17, 18
BLMWSWSE 17

server commands 21
service routines

BLMWSFIN, sample forms service routine 46
BLMWSWAS, ASCII to EBCDIC conversion 47
BLMWSWGM, GMT conversion routine 47
BLMWSWPA, translation for URL-encoded data 47
GMT conversion routine 47

static HTML 29
static URLs

data set mapping 31
overview 29

SysIni service 87

T
Tivoli Storage Manger 52
TRACE server command 21
TSO canned invocation 20

U
URL considerations

dynamic HTML 30
dynamic-URL mapping to FPR 30
dynamic URLs 30
include directive support 32
InfoWeb directive support 33
media types table 33
partitioned data sets 32
sample URL structure 14
static HTML 30
static-URL to data set mapping 31
static URLs 29

W
Web connector 7, 14
Web connector feature overview 3
Web server, MVS 5

106 Version 7.1

File Number: S370/30xx/4300
Program Number: 5697-SD9

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC31-8757-00

	Contents
	Preface
	Who Should Read This Guide
	Prerequisite and Related Documentation
	What This Guide Contains
	Typeface Conventions
	Contacting Customer Support

	Tivoli Information Management for z/OS and the World Wide Web
	Overview

	REXX Web connector for MVS -- Overview
	Client Components
	MVS/ESA Overview
	Tivoli Information Management for z/OS Considerations
	The REXX Web connector for MVS Web Server
	The Database Gateway Application

	REXX Web connector for MVS -- Installation and Operations
	Prerequisites
	Running the REXX Web connector for MVS Server as an MVS Batch Job
	BLMWWEBS Parameters
	Loading the REXX Web connector for MVS Home Page from a Client Browser
	Stopping the REXX Web connector for MVS

	Test from a Client
	Running the REXX Web connector for MVS as an MVS Started Task

	REXX Web connector for MVS -- Security Considerations
	The REXX Web connector for MVS Operating in an Intranet
	Security Service Routines
	RACF Privileges and Authorizations
	REXX Web connector for MVS User Authentication

	The REXX Web connector for MVS Operating in the Internet
	Securing Your Database Gateway Application (DGA)
	The REXX Interpret Statement
	TSO Command Invocation
	Access to Data in the Tivoli Information Management for z/OS Database

	REXX Web connector for MVS -- Commands
	BLMWWEBS Commands
	REXX Web connector for MVS Server Commands

	REXX Web connector for MVS -- Logging
	REXX Web connector for MVS Log Codes

	REXX Web connector for MVS––URL Considerations
	Static URLs
	Dynamic URLs
	Static HTML
	Dynamic HTML
	Dynamic-URL Mapping to a Forms Processing Routine
	Static-URL to Data Set Mapping
	Allocation Partitioned Data Sets To Be Used with the REXX Web connector for MVS
	Include Directive Support
	InfoWeb Directive Support - Expiring a Document
	The Media Types Table

	REXX Web connector for MVS and REXX Web connector for OS/390 -- REXX Globals
	RGV Service Invocation
	Function Call Syntax
	Functions
	BLMXSMK
	BLMXSDR
	BLMXVPT
	BLMXVGT
	BLMXVDR

	Using RGV Services -- an Example

	The Database Gateway Application
	Overview of the Database Gateway Application
	DGA REXX Forms Processing Routines (FPRs)
	How DGA REXX Forms Processing Routines (FPRs) Are Invoked
	The REXX Web connector for MVS Server Service Router - BLMWSWRT
	BLMWSWRT Operation

	Sample DGA REXX Forms Processing Routines
	DGA REXX Forms Processing Routines Interface
	DGA REXX Forms Processing Routines Operation

	Sample DGA REXX Forms Service Routines
	DGA REXX Forms Service Routine BLMWSFIN Interface
	DGA REXX Forms Service Routine BLMWSFTE Interface
	DGA return codes
	HTML Documents
	Web Server Service Routines

	Modifying the Database Gateway Application
	Sample Database Gateway Application

	Using Java and JavaScript to Validate Data Fields
	Data Validation on the Server
	Data Validation on the Client Using Java Applets
	Overview of the Java Applets
	Validation that Is Supported
	Validation that Is Not Supported

	Overview of the Sample Programs
	Sample # 1—Data Field Validation Using Java and JavaScripts
	Sample # 2—Data Validation: Dynamically Generated HTML Forms
	Sample # 3—Data Validation: Static HTML Forms

	Java Applet Prerequisites
	Installation and Configuration of the Sample Programs
	The Supplied Java Applets
	The Supplied Samples
	Sample #1—Data Field Validation Using Java and JavaScripts
	Sample #2—Data Field Validation: Dynamically Generated HTML Forms
	Sample #3—Data Field Validation: Static HTML Forms
	Advanced Modification of Sample Programs

	REXX Web connector for OS/390 -- Overview
	Overview of the REXX Web connector for OS/390
	IBM HTTP Server for OS/390
	Tivoli Information Management for z/OS HLAPI/REXX Interface
	DGA Considerations
	Processing a Request from a Client Browser

	Debugging REXX EXECs
	Multitasking
	Prerequisites

	REXX Web connector for OS/390 -- Installation
	Installing the Database Gateway Application
	Verifying HTTP Server File Access
	Starting the Sample Application

	Migration from REXX Web connector for MVS
	Migration from Earlier Versions of the Web connector for OS/390

	REXX Web connector for OS/390 -- Security Considerations
	Sample Security Configuration
	Migration Notes for Security

	REXX Web connector for OS/2 -- Overview
	Overview of the REXX Web connector for OS/2
	Processing a Request from a Client Browser

	Prerequisites
	Installation

	REXX Web connector for OS/2 -- Functional Interface
	Initweb
	Callweb
	Endweb
	Callable Service Routines

	REXX Web connector for OS/2 -- Security Considerations
	Security Considerations
	Sample Security Configuration
	Migration Notes for Security

	REXX Web connector for OS/2 -- Database Gateway Application
	The Database Gateway Application (DGA)
	DGA Service Routines
	DGA Router - BLMWSWRT
	DGA Initialization — BLMWSINI
	DGA Termination - BLMWSTRM
	DGA Global Variable Pool Service - BLMWSMLT

	DGA Forms Processing Routines
	DGA Forms Service Routines
	DGA Forms Initialization Service - BLMWSFIN

	General Migration Notes for MVS Database Gateway Application to OS/2
	Specific Migration Notes for MVS Database Gateway Application to OS/2
	Migrating the BLMWSFIN Routine
	Migrating Forms Processing Routines

	Communication Protocols
	Migration Notes for Communication Protocol

	Multithreaded Transactions
	Migration Notes for Multithreaded Transactions

	REXX Web connector for OS/2 -- Global Variables
	Global Variables
	SysIni Usage
	Migration Notes for Global Variables

	REXX Web Connector for OS/2 -- Logging
	Migration Notes for Logging

	Relating Publications to Specific Tasks
	Typical Tasks

	Tivoli Information Management for z/OS Courses
	Education Offerings
	United States
	United Kingdom

	Where to Find More Information
	The Tivoli Information Management for z/OS Library

	Index

